KARAKTERISASI SIFAT OPTIK C-DOTS DARI KULIT LUAR SINGKONG MENGGUNAKAN TEKNIK MICROWAVE

Authors

  • Permono Adi Putro Program Studi Pendidikan Fisika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Prof. Dr. Hamka
  • Liszulfah Roza Program Studi Pendidikan Fisika, Fakultas Keguruan dan Ilmu Pendidikan, Universitas Muhammadiyah Prof. Dr. Hamka
  • Isnaeni - Pusat Penelitian Fisika, Lembaga Ilmu Pengetahuan Indonesia

DOI:

https://doi.org/10.34151/technoscientia.v11i2.894

Keywords:

C-dots, cassava outer skin, energy shift, microwave duration, precursor solution concentration

Abstract

Carbon dots (C-dots) are a new type of phosphorescent nanoparticles that can be easily synthesized from natural sources or raw materials. The outer shell of cassava is the second waste obtained from cassava skin waste which is less attention to be utilized. Synthesis of C-dots from the outer shell of dried cassava has been successfully carried out with Microwave techniques. Synthesis of C-dots was carried out using water as a solvent with a variation of the concentration of precursor solutions to the microwave duration. Microwave duration causes changes in the structure and optical properties of C-dots. C-dots are characterized to study the optical properties of the UV-Vis absorbance spectrum and emission intensity in the form of emissions. The observed optical properties aim to determine the C-dots energy transition, such as surface and core energy. The core energy level becomes dominant in the transition π→π* compared to the transition of n→π* in surface energy when the C-dots concentration increases so that energy shifts. This phenomenon is known from the top of the broad C-dots emission spectrum and shifts to longer wavelengths. In addition, we suspect that the difference in C-dots emissions is caused by the molecular density and content of the preparation based on the concentration of precursor solutions and the length of microwave time.

References

Algarra, M., Campos, B. B., Radotić, K., Mutavdžić, D., Bandosz, T., Jiménez-Jiménez, J., … Esteves da Silva, J. C. G. (2014). Luminescent Carbon Nanoparticles: Effects of Chemical Functionalization, and Evaluation of Ag+ Sensing Properties. Journal of Materials Chemistry A, 2(22), 8342. https://doi.org/10.1039/c4ta00264d.
Aloukos, P., Papagiannouli, I., Bourlinos, A. B., Zboril, R., & Couris, S. (2014). Third-order nonlinear optical response and optical limiting of colloidal carbon dots. Optics Express, 22(10), 12013. https://doi.org/10.1364/OE.22.012013
Arcudi, F., Dordevic, L., & Prato, M. (2016). Synthesis, separation, and characterization of small and highly fluorescent nitrogen-doped carbon nanodots. Angewandte Chemie- International Edition, 55(6), 2107-2112. https://doi.org/10.1002/anie.201510158.
Baker, S. N., & Baker, G. A. (2010). Luminescent Carbon Nanodots: Emergent Nanolights. Angewandte Chemie-International Edition, 49(38), 6726-6744. https://doi.org/10.1002/ anie.200906623.
Bandi, R., Dadigala, R., Gangapuram, B. R., & Guttena, V. (2018). Green Synthesis of Highly Fluorescent Nitrogen-Doped Carbon Dots from Lantana camara Berries for Effective Detection of Lead(II) and Bioimaging. Journal of Photochemistry and Photobiology B: Biology, 178, 330-338. https://doi.org/10.1016/j.jphoto biol.2017.11.010.
Bao, L., Liu, C., Zhang, Z. L., & Pang, D. W. (2015). Photoluminescence-Tunable Carbon Nanodots: Surface-State Energy-Gap Tuning. Advanced Materials, 27(10), 1663-1667. https://doi.org/10.1002/adma.201405070.
Baruah, U., Gogoi, N., Konwar, A., Jyoti Deka, M., Chowdhury, D., & Majumdar, G. (2014). Carbon Dot Based Sensing of Dopamine and Ascorbic Acid. Journal of Nanopar-ticles, 2014, 1-8. https://doi.org/10. 1155/2014/178518.
Bhaisare, M. L., Talib, A., Khan, M. S., Pandey, S., & Wu, H. F. (2015). Synthesis of Fluorescent Carbon Dots via Microwave Carbonization of Citric Acid in Presence of Tetraoctyla-mmonium Ion, and their Application to Cellular Bioimaging. Microchimica Acta, 182(13-14), 2173-2181. https:// doi.org/10.1007/s00604-015-1541-5.
Bourlinos, A. B., Zbořil, R., Petr, J., Bakandritsos, A., Krysmann, M., & Giannelis, E. P. (2012). Luminescent Surface Quaternized Carbon Dots. Chemistry of Materials, 24(1), 6-8. https://doi.org/10.1021/cm2026637.
Castro, H. E. P. S., Pereira, M. A. K. P., Ferreira, V. C., Ickmann, J. A. M. H., & COrreia, R. I. R. B. C. (2017). Optical characterization of carbon quantum dots in colloidal suspen-sions. Optical Materials Express, 7(2), 5801-5806.
Cheng, C., Shi, Y., Li, M., Xing, M., & Wu, Q. (2017). Carbon Quantum Dots from Carbonized Walnut Shells: Structural Evolution, Fluorescence Characteristics, and Intracellular Bioimaging. Materials Science and Engineering C, 79, 473-480. https:// doi.org/10.1016/j.msec.2017.05.094.
Cui, B., Yan, L., Gu, H., Yang, Y., Liu, X., Ma, C. Q., … Jia, H. (2018). Fluore-scent Carbon Quantum Dots Synthesized by Chemical Vapor Deposition: An alternative Candidate for Electron Acceptor in Polymer Solar Cells. Optical Materials, 75, 166-173. https://doi.org/10.1016/j.optmat.2017.10.010.
Ding, C., Zhu, A., & Tian, Y. (2014). Functional Surface Engineering of C-dots for Fluorescent Biosensing and in Vivo Bioimaging. Accounts of Chemical Research, 47(1), 20-30. https://doi.org/10.1021/ar400023s.
Dior Al Ghifari, A., & Pratama Putra, W. (2017). Analisis Fotoluminesensi Karbon Dot Dari Daun Teh dan Daun Pepaya dengan Teknik Microwave. Seminar Nasional Fisika, VI, 19-26.
Esteves da Silva, J. C. G., & Gonçalves, H. M. R. (2011). Analytical and Bioanalytical Applications of Carbon Dots. TrAC-Trends in Analytical Chemistry, 30(8), 1327-1336. https:// doi.org/10.1016/j.trac.2011.04.009.
Fang, Y., Guo, S., Li, D., Zhu, C., Ren, W., Dong, S., & Wang, E. (2012). Easy Synthesis and Imaging Appli-cations of Cross-linked Green Fluorescent Hollow Carbon Nanopar-ticles. ACS Nano, 6(1), 400-409. https://doi.org/10.1021/nn2046373.
Fatimah, S., Tahir, D., Selatan, S., Fisika, P. P., Ilmu, L., Indonesia, P., & Selatan, T. (2017). Sintesis dan Karakterisasi Fotoluminisens Carbon Dots Berbahan Dasar Organik dan Limbah Organik, VII(2), 37-41.
Goryacheva, I. Y., Sapelkin, A. V., & Sukhorukov, G. B. (2017). Carbon Nanodots: Mechanisms of Photolumi-nescence and Principles of Applica-tion. TrAC-Trends in Analytical Che-mistry, 90, 27-37. https://doi.org/10. 1016/j.trac.2017.02.012
Han, S., Chang, T., Zhao, H., Du, H., Liu, S., Wu, B., & Qin, S. (2017). Cultivating Fluorescent Flowers with Highly Luminescent Carbon Dots Fabricated by a Double Passivation Method. Nanomaterials, 7(7), 176. https://doi.org/10.3390/nano7070176.
Himaja, A. L., Karthik, P. S., Sreedhar, B., & Singh, S. P. (2014). Synthesis of Carbon Dots from Kitchen Waste: Conversion of Waste to Value Added Product. Journal of Fluorescence, 24(6), 1767-1773. https://doi.org/10. 1007/s10895-014-1465-1.
Hu, Q., Gong, X., Liu, L., & Choi, M. M. F. (2017). Characterization and Analy-tical Separation of Fluorescent Carbon Nanodots. Journal of Nano-materials, 2017, 30-37. https://doi.org/ 10.1155/2017/1804178
Idrus, R., Lapanporo, B. P., & Putr, Y. S. (2018). Studi Teoritik Respons Optik Two-Level System Semiconductor Quantum Dots. PRISMA FISIKA, VI(2), 82-88.
Isnaeni, I Rahmawati, R. I. and M. Z. (2018). Photoluminescence Study of Carbon Dots from Ginger and Galangal Herbs using Microwave Technique. Journal of Physics: Conference Series. https://doi.org/10. 1088/1742-6596/985/1/012004.
Isnaeni, Herbani, Y., & Suliyanti, M. M. (2018). Concentration effect on optical properties of carbon dots at room temperature. Journal of Luminescen-ce, 198, 215-219. https://doi.org/10. 1016/j.jlumin.2018.02.012.
Ke, J., Li, X., Zhao, Q., Liu, B., Liu, S., & Wang, S. (2017). Upconversion car-bon quantum dots as visible light responsive component for efficient enhancement of photocatalytic perfor-mance. Journal of Colloid and Interface Science, 496, 425-433. https://doi.org/10.1016/j.jcis.2017.01.121.
Kwon, W., Do, S., Kim, J. H., Jeong, M. S., & Rhee, S. W. (2015). Control of Photoluminescence of Carbon Nano-dots via Surface Functionalization using Para-substituted Anilines. Scientific Reports. https://doi.org/10. 1038/srep12604
Liu, Y., Zhao, Y., & Zhang, Y. (2014). One-Step Green Synthesized Fluore-scent Carbon Nanodots from Bamboo Leaves for Copper(II) Ion Detection. Sensors and Actuators, B: Chemical, 196, 647-652. https://doi.org/10.1016/ j.snb.2014.02.053.
Ma, X., Dong, Y., Sun, H., & Chen, N. (2017). Highly Fluorescent Carbon Dots from Peanut Shells as Potential Probes for Copper Ion: The Optimi-zation and Analysis of the Synthetic Process. Materials Today Chemistry, 5, 1-10. https://doi.org/10.1016/j. mtchem.2017.04.004.
Mao, Q. X., Han, L., Shu, Y., Chen, X. W., & Wang, J. H. (2016). Improving the Biocompatibility of Carbon Nano-dots for Cell Imaging. Talanta, 161, 54-61. https://doi.org/10.1016/j.talan ta.2016.08.031.
Mohd Yazid, S. N. A., Chin, S. F., Pang, S. C., & Ng, S. M. (2013). Detection of Sn(II) Ions via Quenching of the Fluo-rescence of Carbon Nanodots. Micro-chimica Acta, 180(1-2), 137-143. https://doi.org/10.1007/s00604-012-0908-0.
Mozdbar, A., Nouralishahi, A., Fatemi, S., & Mirakhori, G. (2018). The Effect of Precursor on the Optical Properties of Carbon Quantum Dots Synthesized by Hydrothermal/Solvothermal Method. AIP Conference Proceedings, 1920. https://doi.org/10.1063/1.50189 61.
Ng, S. M. (2014). Sustainable Alternative in Environmental Monitoring using Carbon Nanoparticles as Optical Probes. Trends in Environmental Ana-lytical Chemistry, 3, 36-42. https://doi. org/10.1016/j.teac.2014.08.001.
Ngu, P. Z. Z., Chia, S. P. P., Fong, J. F. Y., & Ng, S. M. (2016). Synthesis of Carbon Nanoparticles from Waste Rice Husk Used for the Optical Sensing of Metal Ions. Xinxing Tan Cailiao/New Carbon Materials, 31(2), 135-143. https://doi.org/10.1016/S18 72-5805(16)60008-2.
Pires, N. R., Santos, C. M. W., Sousa, R. R., de Paula, R. C. M., Cunha, P. L. R., & Feitosa, J. P. A. (2015). Novel and Fast Microwave-Assisted Synthe-sis of Carbon Quantum Dots from Raw Cashew Gum. Journal of the Brazilian Chemical Society, 26(6), 1274-1282. https://doi.org/10.5935/01 03-5053.20150094.
Qurrata, A., Tahir, D., Ramlan, N. M., & Putri, R. H. (2018). Perbandingan Sifat Optik Karbon Dots (C-Dots) dari Daun Mangga Kering dan Segar. Prosiding Seminar Nasional Quan-tum, 25, 626-623.
Smagulova, S. A., Egorova, M. N., Tomskaya, A. E., Kapitonov, A. N. 2017, Synthesis of Carbon Dots with Tunable Luminescence. Journal of Material Science & Engineering, 06 (05), 1-6. https://doi.org/10.4172/21 69-0022.1000376.
Strauss, V., Margraf, J. T., Dolle, C., Butz, B., Nacken, T. J., Walter, J., … Guldi, D. M. (2014). Carbon Nano-dots: Toward a Comprehensive Understanding of their Photolumine-scence. Journal of the American Chemical Society, 136(49), 17308-17316. https://doi.org/10.1021/ja5101 83c.
Sugiarti, S., & Darmawan, N. (2015). Synthesis of Fluorescence Carbon Nanoparticles From Ascorbic Acid. Indones. J. Chem, 15(2), 141-145.
Tarasenka, N., Stupak, A., Tarasenko, N., Chakrabarti, S., & Mariotti, D. (2017). Structure and Optical Proper-ties of Carbon Nanoparticles Genera-ted by Laser Treatment of Graphite in Liquids. ChemPhysChem, 18(9), 1074-1083. https://doi.org/10.1002/cp hc.201601182.
Unnikrishnan, B., Wu, C. W., Chen, I. W. P., Chang, H. T., Lin, C. H., & Huang, C. C. (2016). Carbon Dot-Mediated Synthesis of Manganese Oxide Deco-rated Graphene Nanosheets for Supercapacitor Application. ACS Sus-tainable Chemistry and Engineering, 4(6), 3008-3016. https://doi.org/10.10 21/acssuschemeng.5b01700.
Vassilakopoulou, A., Georgakilas, V., Vainos, N., & Koutselas, I. (2016). Successful Entrapment of Carbon Dots within Flexible Free-Standing Transparent Mesoporous Organic-Inorganic Silica Hybrid Films for Photonic Applications Successful Entrapment of Carbon Dots within Flexible Free-Standing Transparent Mesoporous Organic-In, 1-24. Retrie-ved from https://arxiv.org/ftp/arxiv/pa pers/1608/1608.00824.pdf.
Vedran Milosavljevica Pavel Kopela, et al., A. M. (2014). Microwave Prepara-tion of Carbon Quantum Dots with Different Surface Modification. Journal of Metallomics and Nanotechnologies, 3, 16-22.
Wang, R., Lu, K.-Q., Tang, Z.-R., & Xu, Y.-J. (2017). Recent Progress in Carbon Quantum Dots: Synthesis, Properties and Applications in Photocatalysis. J. Mater. Chem. A, 5(8), 3717–3734. https://doi.org/10. 1039/C6TA08660H.
Xu, X., Ray, R., Gu, Y., Ploehn, H. J., Gearheart, L., Raker, K., & Scrivens, W. A. (2004). Electrophoretic Analysis and Purification of Fluorescent Single-Walled Carbon Nanotube Fragments. Journal of the American Chemical Society, 126, 12736-12737. https:// doi.org/10.1021/ja040082h.
Yoshinaga, T., Iso, Y., & Isobe, T. (2018). Particulate, Structural, and Optical Properties of D-Glucose-Derived Car-bon Dots Synthesized by Microwave-Assisted Hydrothermal Treatment. ECS Journal of Solid State Science and Technology, 7(1), R3034-R3039. https://doi.org/10.1149/2.0091801jss.
You, Y., Zhang, H., Liu, Y., & Lei, B. (2016). Transparent sunlight conver-sion film based on carboxymethyl cellulose and carbon dots. Carbo-hydrate Polymers, 151, 245-250. https://doi.org/10.1016/j.carbpol.2016.05.063.
Yu, J., Nan, J., & Zeng, H. (2017). Size Control of Nanoparticles by Multiple-Pulse Laser Ablation. Applied Surface Science, 402, 330-335. https://doi.org/ 10.1016/j.apsusc.2017.01.094.
Zhou, L., Li, Z., Liu, Z., Ren, J., & Qu, X. (2013). Luminescent Carbon Dot-Gated Nanovehicles for pH-Triggered Intracellular Controlled Release and Imaging. Langmuir, 29(21), 6396-64 03. https://doi.org/10.1021/la400479n.

Downloads

Published

01-02-2019

How to Cite

Putro, P. A., Roza, L., & -, I. (2019). KARAKTERISASI SIFAT OPTIK C-DOTS DARI KULIT LUAR SINGKONG MENGGUNAKAN TEKNIK MICROWAVE. JURNAL TEKNOLOGI TECHNOSCIENTIA, 11(2), 128–136. https://doi.org/10.34151/technoscientia.v11i2.894