PERBANDINGAN METODE SOM (SELF ORGANIZING MAP) DENGAN PEMBOBOTAN BERBASIS RBF (RADIAL BASIS FUNCTION)

Authors

  • Andharini Dwi Cahyani Program Studi Teknik Informatika, Universitas Trunojoyo, Madura
  • Bain Khusnul Khotimah Program Studi Teknik Informatika, Universitas Trunojoyo, Madura
  • Rafil Tania Rizkillah Program Studi Teknik Informatika, Universitas Trunojoyo, Madura

DOI:

https://doi.org/10.34151/technoscientia.v7i1.619

Keywords:

SOM, Running Time, Clustering, SOM-RBF

Abstract

In many clustering systems many methods was used to cluter-ization, one of which is the SOM (Self Organizing Maps). In our study we used two approaches. The first  approach was a lawyer-cluster's using SOM-RBF used in the training data and could be expected to result in better cluster. And the second approach clustering was used of SOM.Comparison of both methods is based on the application of the data derived from  the  dataset  movielens.org  site.  Comparative  assessment  using  three scenarios, namely the MSE as a stop condition on the running time, the MSE as the  stop  condition of the epoch and the learning rate, and MSE as the stop condition of the actual value of the MSE. With this running time is detected which is more rapid approach to the time span for extracting training data. Based on the results of experiments performed using 500 data, which is applied to clusters 3 and 4 lead to the conclusion that the first approach has the value of MSE is actually closer to the absolute value of MSE as compared to the second approach.

References

Kahira, Ulfa.Integrasi Self Organizing Maps dan Algoritma K-Means Untuk Clustering Data Ketahanan Pangan Kabupaten di Wilayah Provinsi Bali, Nusa Tenggara Timur, dan Nusa Tenggara Barat.Institut Pertanian Bogor.2012
Riyandwayana, Ananda dkk. Pengembangan Sistem Rekomendasi Peminjaman Buku Berbasis Web Menggunakan Metode Self Organizing Maps Clustering Pada Badan Perpustakaan Dan Kearsipan (BAPERSIP) Provinsi Jawa Timur. Institut Teknologi Sepuluh November Surabaya.2012
Damayanti, Auli.Pendekatan ARRYTHMIA Hasil ECG Menggunakan Radial Basis Function Dan Kohonen Self Organizing Maps. Universitas Airlangga.2012
Baboo, S. Santosh.Combining Self Organizing Maps and Radial Basis Function Network for Tamil handwritten Character Recognition.University for women,Coimbatore,India.2009
Faza, Ahmad.Klasterisasi Teks Informasi Beasiswa Menggunakan Self Organizing Maps (SOM). Universitas Trunojoyo Madura.2012.
http://www.proweb.co.id/articles/web_application/PHP_adalah.html, diakses pada tanggal 03 Juni 2013
http://kc99lounge.blogspot.com/2010/07/data-mining.html, diakses pada tanggal 10 Juli 2013
Kelompok 2. Metode Peramalan 2011.Jurusan Matematika FMIPA UNS.2011
Wahyuningrum, Rima Tri,dkk. Pengenalan Pola Senyum Menggunakan Self Organizing Maps (SOM) Berbasis Ekstraksi FiturTwo-Dimensional Principal ComponentAnalysis(2DPCA).Univrsitas Trunojoyo.2012
Jariah, Ainun,dkk.Pengenalan Pola Tanda Tangan Menggunakan Metode Moment Invariant Dan Jaringan Syaraf Radial Basis Function (RBF).Universitas Yogyakarta.2011
Heriyanto, Dwi N. Penerapan Mtode Radial Basis Function Dengan K-Means Cluster Untuk Peramalan Kebutuhan Straw.Universitas Trunojoyo.2013
http://movielens.org

Downloads

Published

01-08-2014

How to Cite

Cahyani, A. D., Khotimah, B. K., & Rizkillah, R. T. (2014). PERBANDINGAN METODE SOM (SELF ORGANIZING MAP) DENGAN PEMBOBOTAN BERBASIS RBF (RADIAL BASIS FUNCTION). JURNAL TEKNOLOGI TECHNOSCIENTIA, 7(1), 85–92. https://doi.org/10.34151/technoscientia.v7i1.619