PENGARUH ORIENTASI DISKONTINUITAS BATUAN TERHADAP STABILITAS LERENG DI RUAS JALAN UTARA GUA SUROCOLO BANTUL

Authors

  • Arie Noor Rakhman IST AKPRIND Yogyakarta

DOI:

https://doi.org/10.34151/technoscientia.v16i2.4658

Keywords:

diskontinuitas, lereng, kinematika, rmr

Abstract

Struktur geologi mempengaruhi stabilitas lereng batuan, terutama di daerah Bantul sekitar Kali Opak sejak gempa tektonik tahun 2006. Penelitian ini dilakukan dengan tujuan untuk mengevaluasi pengaruh orientasi diskontinuitas batuan terhadap stabilitas lereng batuan sebagai bagian dari mitigasi bencana longsor. Lokasi penelitian dilakukan pada tujuh lereng batuan di tepi ruas jalan akses utara Goa Surocolo, Kabupaten Bantul. Penilaian stabilitas lereng dengan menggunakan Rock Mass Rating (RMR) versi 1979 dengan rentang antara 43 hingga 72 menunjukkan lereng batuan cenderung stabil. Setelah RMR 1989 diterapkan dengan penambahan parameter orientasi diskontinuitas terdapat penurunan nilai menjadi 25 hingga 72. Penurunan nilai ini didukung dengan hasil analisis kinematika yang mengindikasikan potensi longsoran baji yang berasal dari perpotongan dua set kekar dengan arah N292°E - N322°E, sejajar dengan kemiringan lereng N300°E - N318°E. Hasil pengujian statistik dari uji t menunjukkan bahwa nilai p yang dihasilkan (0,136) lebih besar dari tingkat signifikansi (0,05). Hal ini mengindikasikan bahwa penambahan parameter orientasi kekar pada RMR tidak memiliki pengaruh signifikan terhadap perbedaan kedua nilai RMR tersebut. Nilai RMR versi 1989 yang terendah dapat dipergunakan untuk mengidentifikasikan lereng mana yang membutuhkan prioritas dalam penanganan dan pemantauan lebih lanjut di antara lereng yang diteliti di lokasi penelitian.

References

Aksoy, C. O. (2008). Review of Rock Mass Rating Classification: Historical Developments, Applications, and Restrictions. Journal of Mining Science, 44(1), 51–63. https://doi.org/10.1007/s10913-008-0005-2

Alashti, M. S. (2018). New Empirical Relations for Determination of Rock Slope Safety Factor in Fully rained Conditions on Section RS06 of Block five in Sungun Copper Mine. East African Scholars Multidisciplinary Bulletin, 1(3), 61–121. https://doi.org/10.36349/easmb.2018.v01i03.005

Basahel, H., & Mitri, H. (2017). Application of rock mass classification systems to rock slope stability assessment: A case study. Journal of Rock Mechanics and Geotechnical Engineering, 9, 993–1009. https://doi.org/10.1016/j.jrmge.2017.07.007

Bieniawski, Z. T. (1989). Engineering Rock Mass Classifications. John Wiley & Sons.

Bieniawski, Z. T. (1993). Classification of Rock Masses for Engineering: The RMR System and Future Trends, Comprehensive rock engineering. In J. A. Hudson (Ed.), Comprehensive Rock Engineering: Principles, Practice & Projects (1st ed., pp. 553–573). Pergamon Press. https://doi.org/10.1016/B978-0-08-042066-0.50028-8

Chen, Q., & Yin, T. (2019). Integration of Homogeneous Structural Region Identification and Rock Mass Quality Classification. Royal Society Open Science Journal, 6(1), 18. https://doi.org/10.1098/rsos.181353

Cichoń, M. (2020). Reporting Statistical Methods and Outcome of Statistical Analyses in Research Articles. Pharmacological Reports, 72, 481–485. https://doi.org/10.1007/s43440-020-00110-5

Dimitrova, D. S., Kaishev, V. K., & Tan, S. (2020). Computing the Kolmogorov-Smirnov Distribution When the Underlying CDF is Purely Discrete, Mixed, or Continuous. Journal of Statistical Software, 95(10 SE-Articles), 1–42. https://doi.org/10.18637/jss.v095.i10

Ghozali, I. (2016). Aplikasi Analisis Multivariate dengan Program IBM SPSS 23 (8th ed.). Badan Penerbit Universitas Diponegoro.

Gio, P. U., & Rosmaini, E. (2016). Belajar Olah Data dengan SPSS, MINITAB, R, MICROSOFT EXCEL, EVIEWS, LISREL, AMOS, dan SMARTPLS (1st ed.). USU Press.

Handayani, L. (2019). Active Fault Zones of the 2006 Yogyakarta Earthquake Inferred From Tilt Derivative Analysis of Gravity Anomalies. Riset Geologi Dan Pertambangan, 29(1), 1–11. https://doi.org/10.14203/risetgeotam2019.v29.1018

Husein, S., Sudarno, I., Pramumijoyo, S., & Karnawati, D. (2010). Paleostress Analysis to Interpret the Landslide Mechanism: A Case Study in Parangtritis, Yogyakarta. Journal of Applied Geology, 2(2), 104–109. https://doi.org/10.22146/jag.7251

Jadesta. (2024). Desa Wisata Seloharjo. Jejaring Desa Wisata. https://jadesta.kemenparekraf.go.id/desa/seloharjosurocolo_goa_jepang

Juhari, A. S., Indrawan, G. B., & Wilopo, W. (2021). The Engineering Characteristics and Classifications of Rock Masses along Road Section from Prambanan to Patuk, Yogyakarta, Indonesia. Journal of Applied Geology, 6(2), 119–127. https://doi.org/10.22146/jag.58034

Kaiser, P. K., MacKay, C., & Gale, A. D. (1986). Evaluation of Rock Classifications at B. C. Rail Tumbler Ridge Tunnels. Rock Mechanics and Rock Engineering, 19(4), 205–234. https://doi.org/10.1007/bf01039996

Larbi, G., Abderrahmen, B., Ismail, N., Laid, B. M., Ali, H., Ridha, M., Faouzi, M., & Hammoud, I. (2012). Study of Fractured Rock Masses Deformation in Boukhadra (Tebessa) Underground Mine Empirical and Numerical Approach (N-E Algeria). Journal of Geology and Mining Research, 4(2), 23–34. https://doi.org/10.5897/JGMR11.041

Li, Y. (2019). Handbook of Geotechnical Testing: Basic Theory, Procedures and Comparison of Standards. In Handbook of Geotechnical Testing. CRC Press. https://doi.org/10.1201/9780429323744

Milne, D. M., Hadjigeorgiou, J., & Pakalnis, R. (1998). Rock Mass Characterization for Underground Hard Rock Mines. Tunnelling and Underground Space Technology, 13(4), 383–391. https://doi.org/10.1016/S0886-7798(98)00081-9

Oktafiani, P. T., Utami, S. R., & Agustina, C. (2022). Simulasi Pengukuran Longsor pada Kelerengan dan Kedalaman Bidang Gelincir yang Berbeda. Jurnal Tanah Dan Sumberdaya Lahan, 9(2), 329–337. https://doi.org/10.21776/ub.jtsl.2022.009.2.13

Price, D. G., De Freitas, M. H., Hack, H. R. G. K., Higginbottom, I. E., Knill, J. L., & Maurenbrecher, M. (2009). Engineering Geology; Principles and Practice. Springer-Verlag. https://doi.org/I0.1007/978-3-540-68626-2

Rahardjo, W., Sukandarrumidi, & Rosidi, H. M. (1977). Peta Geologi Lembar Yogyakarta, Jawa.

Rahardjo, W., Sukandarrumidi, & Rosidi, H. M. (2012). Peta Geologi Lembar Yogyakarta, Jawa. Pusat Survey Geologi, Badan Geologi. https://geologi.esdm.go.id/geomap/pages/preview/peta-geologi-lembar-kebumen-jawa

Rakhman, A. N., & Heriyadi, N. W. A. A. T. (2017). Pengaruh Diskontinuitas Massa Batuan Volkanik terhadap Stabilitas Lereng di Daerah Jelapan dan Sekitarnya, Kecamatan Pundong, Kabupaten Bantul, Daerah Istimewa Yogyakarta. Jurnal Teknologi Technoscientia, 10(1), 71–77. https://doi.org/10.34151/technoscientia.v10i1.85

Rakhman, A. N., Zakaria, Z., Muslim, D., Haryanto, I., & Mulyaningsih, S. (2019). Modification of Rock Mass Classification in The Rock Slope Platy Jointed Andesite at Seloharjo Area. International Journal of GEOMATE, 16(53), 163–170. https://doi.org/10.21660/2018.53.32848

Rocscience. (2024). Dips User Guide: Tutorials Overview. Rocscience Inc. https://www.rocscience.com/help/dips/tutorials

Romana, M. (1985). New Adjustment Ratings for Application of Bieniawski Classification to Slopes. Proceedings of the International Symposium on the Role of Rock Mechanics in Excavations for Mining and Civil Works, 49–53.

Romana, M., Serón, J. B., & Montalar, E. (2003). SMR Geomechanics Classification: Application, Experience and Validation. 10th Congress of the International Society for Rock Mechanics (ISRM) Proceedings: Technology Roadmap for Rock Mechanics, 1–4.

Romana, M., Tomás, R., & Serón, J. B. (2015). Slope Mass Rating (SMR) Geomechanics Classification: Thirty Years Review. 13th Congress of The International Society for Rock Mechanics (ISRM) Proceedings: International Congress on Rock Mechanics, 10.

Singh, B., & Goel, R. K. (2011). Engineering Rock Mass Classification: Tunneling, Foundations, and Landslides (1st ed.). Butterworth-Heinemann. https://www.sciencedirect.com/book/9780123858788/engineering-rock-mass-classification

Soufi, A., Bahi, L., Ouadif, L., & Kissai, J. E. (2018). Correlation between Rock Mass Rating, Q-System and Rock Mass Index Based On Field Data. 2nd International Congress on Materials & Structural Stability (CMSS-2017), 1–7. https://doi.org/10.1051/matecconf/201814902030

Sugiyono. (2017). Statistika untuk Penelitian (3rd ed.). Alfabeta.

Triana, K., & Hermawan, K. (2020). Slope Mass Rating-Based Analysis to Assess Rockfall Hazard on Yogyakarta Southern Mountain, Indonesia. Geoenvironmental Disasters, 7(24), 1–17. https://doi.org/10.1186/s40677-020-00164-w

Vásárhelyi, B. (2009). A Possible Method for Estimating the Poisson’s Rate Values of the Rock Masses. Acta Geodaetica et Geophysica Hungarica, 44(3), 313–322. https://doi.org/https://doi.org/10.1556/ageod.44.2009.3.4

Wahyudi, R., & Agustina, D. H. (2022). Pengaruh Kadar Air Terhadap Kestabilan Lereng. Sigma Teknika, 5(1), 151–157. https://doi.org/10.33373/sigmateknika.v5i1.4153

Wyllie, D. C. (2018). Rock Slope Engineering: Civil Applications (5th ed.). CRC Press.

Wyllie, D. C., & Mah, C. W. (2004). Rock Slope Engineering: Civil and Mining (4th ed.). Spon Press.

Zhang, L. (2016). Determination and Applications of Rock Quality Designation (RQD). Journal of Rock Mechanics and Geotechnical Engineering, 8, 389–397. https://doi.org/10.1016/j.jrmge.2015.11.008

Downloads

Published

30-03-2024

How to Cite

Rakhman, A. N. (2024). PENGARUH ORIENTASI DISKONTINUITAS BATUAN TERHADAP STABILITAS LERENG DI RUAS JALAN UTARA GUA SUROCOLO BANTUL . JURNAL TEKNOLOGI TECHNOSCIENTIA, 16(2), 51–60. https://doi.org/10.34151/technoscientia.v16i2.4658