PROSES KONVERSI METANOL MENJADI SENYAWA AROMATIK
DOI:
https://doi.org/10.34151/technoscientia.v15i2.4159Keywords:
co-feeding, pengumpanan bersama, HZSM-5, metanol, senyawa aromatik, zeolit, katalisAbstract
Karya ini bertujuan untuk menganalisis proses pembuatan metanol menjadi senyawa aromatik melalui penggunaan dua jenis katalis. Pertama, keterlibatan zeolite HZSM-5 meliputi proses metanol pada kondisi reaksi yang relatif ringan dan rasio molar berada dalam kondisi reaksi yang disukai untuk proses metanol hingga aromatik (MTA). Kedua, penggunaan co-feeding metanol-pentana mencapai aromatisasi dengan mengadopsi model reaktor konversi yang berdasarkan konversi bahan baku dan distribusi produk. Hasil menunjukkan bahwa pemanfaatan katalitik zeolite HZSM-5 memiliki kinerja katalitik yang lebih unggul daripada katalis konvensional karena efek sinergis dari struktur hierarkis dan keasaman yang tinggi. Penggunaan co-feeding metanol-pentana menunjukkan bahwa kasus berbasis metanol. Lalu, kasus berbasis pentana menyebabkan konsumsi energi total terendah dan tertinggi, secara berturut-turut. Namun, analisis tekno-ekonomi memberikan bahwa kasus berbasis metanol menghasilkan NPV terendah $133,93 MM. Dampak ini dapat meningkatkan kinerja ekonomi secara signifikan.
References
Chen, Z., Hou, Y., Song, W., Cai, D., Yang, Y., Cui, Y., & Qian, W. (2019). High-yield production of aromatics from methanol using a temperature-shifting multi-stage fluidized bed reactor technology. Chemical Engineering Journal, 371, 639–646. https://doi.org/10.1016/j.cej.2019.04.024
Chen, Z., Hou, Y., Yang, Y., Cai, D., Song, W., Wang, N., & Qian, W. (2019). A multi-stage fluidized bed strategy for the enhanced conversion of methanol into aromatics. Chemical Engineering Science, 204, 1–8. https://doi.org/10.1016/j.ces.2019.04.013
Fu, T., Guo, Y., Shao, J., Ma, Q., & Li, Z. (2021). Precisely regulating acid density and types to promote the stable two-step conversion of methanol to aromatics via light hydrocarbons. Microporous and Mesoporous Materials, 320, 111103. https://doi.org/10.1016/j.micromeso.2021.111103
Fu, T., Shao, J., & Li, Z. (2021). Catalytic synergy between the low Si/Al ratio Zn/ZSM-5 and high Si/Al ratio HZSM-5 for high-performance methanol conversion to aromatics. Applied Catalysis B: Environmental, 291, 120098. https://doi.org/10.1016/j.apcatb.2021.120098
Jiang, J., Feng, X., Yang, M., & Wang, Y. (2020). Comparative technoeconomic analysis and life cycle assessment of aromatics production from methanol and naphtha. Journal of Cleaner Production, 277, 123525. https://doi.org/10.1016/j.jclepro.2020.123525
Li, N., Meng, C., & Liu, D. (2018). Deactivation kinetics with activity coefficient of the methanol to aromatics process over modified ZSM-5. Fuel, 233, 283–290. https://doi.org/10.1016/j.fuel.2018.06.044
Pinilla-Herrero, I., Borfecchia, E., Holzinger, J., Mentzel, U. V., Joensen, F., Lomachenko, K. A., Bordiga, S., Lamberti, C., Berlier, G., Olsbye, U., Svelle, S., Skibsted, J., & Beato, P. (2018). High Zn/Al ratios enhance dehydrogenation vs hydrogen transfer reactions of Zn-ZSM-5 catalytic systems in methanol conversion to aromatics. Journal of Catalysis, 362, 146–163. https://doi.org/10.1016/j.jcat.2018.03.032
Ren, S., & Feng, X. (2022). Emergy evaluation of aromatics production from methanol and naphtha. Chinese Journal of Chemical Engineering, 46, 134–141. https://doi.org/10.1016/j.cjche.2021.04.025
Sutardi, M. P., Fardiansyah, M. I., Fauzia, F., & Sari, D. A. (2020). Program simulasi Aspen Hysis bagi mahasiswa teknik kimia di semester awal. PROSIDING SEMINAR NASIONAL UNIVERSITAS ISLAM SYEKH YUSUF, 1, 1370–1373. https://doi.org/10.31219/osf.io/e3t72
Tian, H., Zhang, Z., Chang, H., & Ma, X. (2017). Catalytic performance of imidazole modified HZSM-5 for methanol to aromatics reaction. Journal of Energy Chemistry, 26(3), 574–583. https://doi.org/10.1016/j.jechem.2017.03.008
Wang, C., Si, Z., Wu, X., Lv, W., Bi, K., Zhang, X., Chen, L., Xu, Y., Zhang, Q., & Ma, L. (2019). Mechanism study of aromatics production from furans with methanol over zeolite catalysts. Journal of Analytical and Applied Pyrolysis, 139, 87–95. https://doi.org/10.1016/j.jaap.2019.01.013
Wang, Y., Yu, J., An, H., Jin, W., Qiao, J., Sun, Y., & Cao, J. (2021). Catalytic upgrading of coal tar coupling with methanol using model compound over hierarchal ZSM-5 for increasing light aromatic production under atmosphere pressure. Fuel Processing Technology, 211, 106600. https://doi.org/10.1016/j.fuproc.2020.106600
Xi, Z., Zhou, B., Jiang, B., Wang, J., Liao, Z., Huang, Z., & Yang, Y. (2019). Efficient conversion of methane to aromatics in the presence of methanol at low temperature. Molecular Catalysis, 475, 110493. https://doi.org/10.1016/j.mcat.2019.110493
Zhang, D., Yang, M., & Feng, X. (2019). Aromatics production from methanol and pentane: Conceptual process design, comparative energy and techno-economic analysis. Computers & Chemical Engineering, 126, 178–188. https://doi.org/10.1016/j.compchemeng.2019.04.002
Zhu, X., Wang, Y., Wang, G., Hou, Y., Yu, M., Yang, X., & Yin, F. (2021). Synergistic co-conversion of pentane and methanol to aromatics over bifunctional metal/ZSM-5 zeolite catalysts. Microporous and Mesoporous Materials, 320, 111107. https://doi.org/10.1016/j.micromeso.2021.111107