PENGELOMPOKAN PENYANDANG MASALAH KESEJAHTERAAN SOSIAL DI JAWA BARAT MENGGUNAKAN K-MEANS DAN FUZZY C-MEANS

Authors

  • Lina Rohmaniah STMIK IKMI CIREBON
  • Ahmad Faqih Program studi Teknik Informatika, STMIK IKMI Cirebon
  • Tati Suprapti Program studi Teknik Informatika STMIK IKMI Cirebon

DOI:

https://doi.org/10.34151/technoscientia.v15i1.3847

Keywords:

Clustering, Davies Bouldin Index, Fuzzy C-means, K-means

Abstract

Social welfare problems still occur in some provinces in Indonesia, including in West Java. Social welfare problems cannot be completely overcome, but according to policy perceptions, they can be reduced, therefore analyses are required. Grouping data on people with social welfare problems to find out the best group based on the data will provide alternative policies and appropriate methods. The purpose of this study was to find the best group of people with social welfare problems using the k-means and fuzzy c-means methods based on the results of the DBI evaluation. The methods used for this grouping were the k-means and fuzzy c-means algorithm methods. From the results of this study, it was obtained the best 2 groups from the experiment of fuzzy c-means algorithms based on the smallest DBI assessment or close to 0 between the k-means and fuzzy c-means algorithms from each DBI value, they  were k-means algorithm with value of 0.029 and fuzzy c-means algorithm with value of 0.006.

 

References

Arista, R. R., Asmara, R. A., & Puspitasari, D. (2017). PENGELOMPOKAN KEJADIAN GEMPA BUMI MENGGUNAKAN FUZZY C-MEANS CLUSTERING. 04(02), 117–124.

Hidayatin, I., Adinugroho, S., & Dewi, C. (2019). Pengelompokan Wilayah berdasarkan Penyandang Masalah Kesejahteraan Sosial ( PMKS ) dengan Optimasi Algoritme K-Means menggunakan Self Organizing Map ( SOM ). Jurnal Pengembangan Teknologi Informasi Dan Ilmu Komputer, 3(8), 7524–7531.

Kamila, I., Khairunnisa, U., & Mustakim, M. (2019). Perbandingan Algoritma K-Means dan K-Medoids untuk Pengelompokan Data Transaksi Bongkar Muat di Provinsi Riau. Jurnal Ilmiah Rekayasa Dan Manajemen Sistem Informasi, 5(1), 119. https://doi.org/10.24014/rmsi.v5i1.7381

Mashfuufah, S., Nur, I. M., & Darsyah, M. Y. (2021). Fuzzy Geographically Weighted Clustering dengan Gravitational Search Algorithm pada Kasus Penyandang Masalah Kesejahteraan Sosial di Provinsi Jawa Tengah. Jurnal Litbang Edusaintech (JLE), 2(1), 27–36.

Nabila, Z., Rahman Isnain, A., & Abidin, Z. (2021). Analisis Data Mining Untuk Clustering Kasus Covid-19 Di Provinsi Lampung Dengan Algoritma K-Means. Jurnal Teknologi Dan Sistem Informasi (JTSI), 2(2), 100. http://jim.teknokrat.ac.id/index.php/JTSI

Pramitasari, A. E., & Nataliani, Y. (2021). Perbandingan Clustering Karyawan Berdasarkan Nilai Kinerja Dengan Algoritma K-Means Dan Fuzzy C-Means. JATISI (Jurnal Teknik Informatika Dan Sistem Informasi), 8(3), 1119–1132. https://doi.org/10.35957/jatisi.v8i3.957

Primandana, A., Adinugroho, S., & Dewi, C. (2019). Optimasi Penentuan Centroid pada Algoritme K-Means Menggunakan Algoritme Pillar ( Studi Kasus : Penyandang Masalah Kesejahteraan Sosial di Provinsi Jawa Timur ). 3(11), 10678–10683.

Susanti, R. (2020). IMPLEMENTASI KEBIJAKAN TENTANG PENANGANAN PENYANDANG MASALAH KESEJAHTERAAN SOSIAL DI KOTA TASIKMALAYA. JAK PUBLIK (Jurnal Administrasi Dan Kebijakan Publik), 1(3).

Downloads

Published

30-09-2022

How to Cite

Rohmaniah, L., Faqih, A. ., & Suprapti, T. (2022). PENGELOMPOKAN PENYANDANG MASALAH KESEJAHTERAAN SOSIAL DI JAWA BARAT MENGGUNAKAN K-MEANS DAN FUZZY C-MEANS. JURNAL TEKNOLOGI TECHNOSCIENTIA, 15(1), 1–7. https://doi.org/10.34151/technoscientia.v15i1.3847