STRUKTUR KECEPATAN GELOMBANG S DI DAERAH DEPAN BIDANG SUBDUKSI ALASKA DENGAN MENGANALISA SEISMOGRAM GEMPA C022801L DI STASIUN WHY
DOI:
https://doi.org/10.34151/technoscientia.v0i0.2001Keywords:
Seismogram, Front area of subducted zone, Waveform comparisonAbstract
In this research the measured seismogram of C022801L, Washington U.S.A. is compared to the synthetic seismogram, which is recorded at WHY observation station in three dimensions, where the wave path resides in front area of Alaska subduction zone. The synthetic seismogram is calculated with the GEMINI Program, whose input is in the form of an earth model, which is radial symmetry and transversal isotropic, and the CMT solution of the quake.Simulation and seismogram comparison can only be conducted till a frequency to 15 mHz, because big discrepancies are found at surface wave and the depth wave phase ScS. The surface wave propagates along earth surface till a depth which is equivalent to depth of upper mantle; so that the fitting can be obtained by altering speed structure till base of upper mantle, where the corrections are conducted at bh speed gradient. Correction at upper mantle structure does not bring repair at wave phase ScS. Corrective is further executed at speed structure of shear wave S till CMB, until the good fitting at ScS wave is obtained. S velocity structure in front area of Alaska subduction zone has in reality a strong positive anomaly, and to get fitting at ScS wave, the positive anomaly continues at earth layers below upper mantle till CMB
References
Engdahl, E.R. , Van Der Hilst, R.D., Bu-land, R.P., 1998, Global telese-ismic earthquake relocation with improved travel times and pro-cedures for depth determination, Bull. Seism. Soc. Am., 88, 722 - 743.
Grand, S.P., Van Der Hilst, R.D., Widi-yantoro, S., 1997, Global seis-mic tomography; a snapshot of convection in the Earth, GSA Today 7 , 1 – 7.
Bagus J.S., 1999, Moeglichkeiten und Grenzen der Modellierung vol-lstaendiger langperiodischer S-eismogramme, Doktorarbeit, Be-richte Nr. 12, Inst. fuer Geophy-sik, Uni. Stuttgart
Bulland, R. and Chapman, C., 1983, Travel time Calculation, Bull. Seism. Soc. Am.,73,1271– 1302
Dalkolmo, J., 1993, Synthetische Seis-mogramme fuer eine sphaerisch symmetrische, nichtrotierende Erde durch direkte Berechnung der Greenschen Funktion, Diplo-marbeit, Inst. fuer Geophys., Uni. Stuttgart
Dziewonski, A.M. and Anderson, D.L., 1981, Preliminary reference Earth model, Phys. of the Earth and Plan. Int., 25, 297 – 356
Dziewonski, A.M., Chou, T.A. and Woodhouse, J.H., 1981, Deter-mination Earthquakes Source Para-meters From Waveform Data for Studies of Global and Regional Seismicity, Jour. of Geophys. Res., 86, 2825 – 2852
Friederich, W. and Dalkolmo, J., 1995, Complete synthetic seismo-grams for a spherically sym-metric earth by a numerical computation of the green's func-tion in the frequency domain, Geophys. J. Int., 122, 537 - 550.
Kennett, B., 1991, IASPEI 1991, Seis-mological Tables, Research School of Earths Sciences, Australian National University
Souriau, A. & Poupinet, G., 1991, A stu-dy of the outermost liquid core using differential travel times of the SKS, SKKS and S3KS pha-ses, Phys. of the Earth and Plan. Int., 68, Issue 1 - 2, 183 - 199
Takeuchi, H. and Saito, M., 1972. Seis-mic surface waves in Methods in Computational Physics, Acade-mic Press.
Wysession, M.E., Valenzuela, R.W., Zhu, A. and Bartkó, L., 1995, Inves-tigating the base of the mantle using differential travel times, Phys. of the Earth and Plan. Int., 92, Issue 1 - 2, 67 – 84.
Yu Gu, J., Lerner-Lam, A. L., Dzie-wonski, A.M. and Ekström, G., 2005, Deep structure and seis-mic anisotropy beneath the East Pacific Rise, Earth and Plane-tary Science Letters, 232, 259 – 272