ALGORITMA NAIVE BAYES UNTUK MEMPREDIKSI KELAYAKAN PENERIMA BANTUAN PANGAN NON TUNAI (BPNT) DESA JAGANG LAMPUNG UTARA
DOI:
https://doi.org/10.34151/prosidingsnast.v1i1.5136Keywords:
Feasibility, Data Mining, Naïve Bayes, RapidMinerAbstract
Jagang Village is a government agency in Blambangan Pagar District, North Lampung Regency. Jagang Village runs a government program, namely the Non-Cash Food Assistance (BPNT) program in running the program, some residents who are considered capable actually get assistance. In this study, the method used in predicting the eligibility of recipients and non-recipients of Non-Cash Food Assistance (BPNT) is the Naïve Bayes method with manual calculations using Excel formulas that are composed in such a way as to facilitate data input and testing using RapidMiner 7.1 and produces the same accuracy as manual calculations. The results of the implementation of Data Mining using the Naïve Bayes Method to predict the Eligibility of recipients and non-recipients of Non-Cash Food Assistance (BPNT) obtained a prediction accuracy value of 91% and was tested with RapidMiner software with an Accuracy result of 90.91%.
References
Aji, Ardiansa. (2019). Penerapan Metode Naive Bayes untuk Mengklasifikasi Kelayakan Penerima Bantuan Beras Miskin (Studi Kasus: Kantor Kelurahan Desa Tegalyoso). Diss. University of Technology Yogyakarta
Sugianto, Castaka Agus, and Firdi Rizky Maulana. (2019). "Algoritma Naïve Bayes Untuk Klasifikasi Penerima Bantuan Pangan Non Tunai (Studi Kasus Kelurahan Utama)." Techno. Com 18.4 Hal. 321-331.
Ermawati, Erni. (2019). "ALGORITMA KLASIFIKASI C4. 5 BERBASIS PARTICLE SWARM OPTIMIZATION UNTUK PREDIKSI PENERIMA BANTUAN PANGAN NON TUNAI." SISTEMASI: Jurnal Sistem Informasi 8.3 Hal. 513-528.
Wati, Masna, and Abdul Hadi (2016). "Implementasi Algoritma Naive Bayesian Dalam Penentuan Penerima Program Bantuan Pemerintah." JTRISTE 3.1 Hal. 22-26
Rahmatullah, Sidik, Mukrim Mukrim, and Monica Nindy Pramitha. (2019). "DATA MINING UNTUK MENENTUKAN PRODUK TERLARIS MENGGUNAKAN METODE NAIVE BAYES." Jurnal Informasi dan Komputer 7.2 Hal. 57-64.
Wulandari, Febri. (2019). SISTEM PENGKLASIFIKASIAN PEMILIHAN PENERIMA BERAS MISKIN (RASKIN) MENGGUNAKAN METODE NAÏVE BAYES CLASSIFIER (NBC)(Studi Kasus: Kelurahan Tambakmerang, Girimarto, Wonogiri). Diss. University of Technology Yogyakarta,
Karyadiputra, Erfan. (2016). "Analisis Algoritma Naive Bayes Untuk Klasifikasi Status Kesejahteraan Rumah Tangga Keluarga Binaan Sosial." Technologia: Jurnal Ilmiah 7.4
Rahardjo, Andi Bekto. (2015). "Penerapan Data Mining Untuk Mengklasifikasi Penerima dan Bukan Penerima Kartu Identitas Miskin (KIM) Kelurahan Sumurrejo Gunungpati dengan Metode Naive Bayes Classifier."
Zhang, H. (2004). The Optimality of Naive Bayes. AAAI Conference on Artificial Intelligence, 1(2), 1–6.
Buntine, W. L. (1994). Operations for Learning with Graphical Models. Journal of Artificial Intelligence Research, 2, Hal. 159–225.
Ramadhani, S., & Arisandi, D. (2021). Implementasi Algoritma Naive Bayes untuk Menentukan Penerima Bantuan Sosial. Jurnal Informatika, 15(3), Hal. 45–53.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Rustam, Yanike Anestasya Anggraeny, Septa, Dwi Marisa Efendi
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.