SISTEM PENGENALAN WAJAH MENGGUNAKAN ALGORITMA CONVOLUTIONAL NEURAL NETWORK (CNN)
DOI:
https://doi.org/10.34151/prosidingsnast.v1i1.5108Keywords:
Accuracy, Convolutional Neural Network (CNN), Face Recognition, SpeedAbstract
The use of passwords is common in digital security and verification systems, but it is still vulnerable to manipulation, hacking, and theft. Alternative methods that can be done such as facial recognition have begun to be used, because facial features are difficult to fake, stable throughout life, and unique to each individual. Facial recognition can be done using various methods, one of which is using Convolutional Neural Network (CNN). CNN is a modern method based on deep learning that offers higher accuracy and processing speed, but requires greater computing resources. This study uses the CNN method to recognize faces in digital security and verification systems, with a dataset from the Yale Face Database, which contains 560 black and white facial images from 28 different subjects with varying formal expressions and lighting conditions, divided into 80% training data (448 images) and 20% testing data (112 images). The results of the study using the CNN method showed that its performance was quite good in terms of computational time efficiency for facial recognition. From the test results, it can be seen that CNN has a level of facial recognition accuracy, which is 98.6607%, in addition, the computation time for the CNN algorithm is quite fast, with a speed of 0.0030 seconds per image. This shows the superiority of CNN in capturing complex features of facial images and efficiency in data processing. However, it should be noted that the CNN algorithm requires quite a lot of computing resources.
References
Adjabi I., Quahabi A., Benzaoui A., Taleb-Ahmed A. . (2020, Aug 1). Past, Present, and Future of Face Recognition. MDPI AG., -. doi:10.3390/electronics90811888
Aggarwal, C. C. (2018). Neural Network and Deep Learning. -: Springer.
Anhar, Putra R. A. (2023, April). Perancangan dan Implementasi Self-Checkout System pada Toko Ritel Menggunakan Convolutional Neural Network. ELKOMIKA, 466-478. Retrieved from https://ejournal.itenas.ac.id/index.php/elkomika/article/view/8405
Azmi K., Defit S., Sumijan. (2023, Jan). Implementasi Convolutional Neural Network (CNN) untuk Klasifikasi Batik Tanah Liat Sumatera Barat. unitek, 16(1), 28-40. Retrieved from https://ejurnal.sttdumai.ac.id/index.php/unitek/article/view/504
Christiawan G. Y., Putra R. A., Sulaiman A., Poerboningtyas E., Listia S. W. P. (2023, Dec 12). Penerapan Convolution Neural Network dalam Mengklasifikasikan Penyakit Daun Tanaman Padi. J-INTECH (Journal of Information and Technology), 11(2), 294-306. doi:https://doi.org/10.32664/J-INTECH.VII:2
Indriani D. D. E., Sinaga J. A., Oktavia G., Syahputra H., Ramadhani F. (2024, June 7). Identifikasi Tanda Tangan dengan Menggunakan Metode Convolution Neural Network (CNN). J-INTECH (Journal of Information and Technology), 12(1), 138-147. Retrieved from jurnal.stiki.ac.id/J-INTECH/article/view/1273/771
Mantik, H. (2022). Pengembangan Electronic Know-Your-Customer Menggunakan Metode Biometric sebagai Alat Bantu Verifikasi Pelanggan Studi Kasus PT. XYZ. Jurnal Sistem Informasi, 9(1), -.
Qotrunnada F. M., Utama P. H. . (2022). Metode Convolutional Neural Network untuk Klasifikasi Wajah Bermasker. PRISMA (Proseding Seminar Nasional Matematika XV (pp. 799-807). Semarang: Universitas Negeri Semarang. Retrieved from https://journal.unnes.ac.id/sju/prisma/article/view/54602
Raj, A. (2014). Real Time Multiple Face Recognition Security System (RTM-FS). Retrieved May 1, 2023, from https://www.researchgate.net/publication: https://www.researchgate.net/publication/261703721
Suryansah A., Habibi R., Awangga R. M. (2020). Penggunaan Face Recognition untuk Akses Ruangan. Bandung: Kreatif Industri Nusantara.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Erfanti Fatkhiyah
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.