KLASIFIKASI STATUS PENGAJUAN KPR RUMAH SEDERHANA MENGGUNAKAN ALGORITMA RANDOM FOREST
DOI:
https://doi.org/10.34151/prosidingsnast.v1i1.5106Keywords:
home ownership credit, classification, random forest, multiclass, consumerAbstract
The property industry has a strategic role in supporting economic growth, especially through Home Ownership Credit (KPR) financing which enables people to own housing. In big cities in Indonesia, various property developers are innovating to meet the demand for modern, affordable housing, but some of them are facing obstacles in the KPR feasibility evaluation process. Developers experience difficulties in managing the eligibility selection process, because inaccurate analysis can make consumers disappointed after paying the down payment (DP) if their KPR application is ultimately rejected. This research aims to classify the status of consumer mortgage applications, with historical data of 969 samples covering previous projects, which contains features such as consumer income, number of dependents, employment, credit history, and type of property being applied for, as well as 1 status feature which states the results of the application. The Random Forest algorithm is used to produce a KPR status classification model into three main categories: Contract, Reject Bank, and Reject Customer. Based on model evaluation using the average multiclass matrix, this model achieved 99% accuracy, with an average precision, recall and f1-score of 98%, which shows this model is very effective in identifying and classifying the three categories of KPR status.
References
Aini, N., Arif, M., Agustin, I. T., & Toyibah, Z. B. (2024). Implementasi Algoritma Random Forest untuk Klasifikasi Bidang MSIB di Prodi Pendidikan Informatika. Jurnal Informatika, 11(1), 11–16. https://doi.org/10.31294/inf.v11i1.20637
Irma Purnamasari, A., & Ali, I. (2024). PERBANDINGAN TINGKAT AKURASI ALGORITMA DECISION TREE DAN RANDOM FOREST DALAM MENGKLASIFIKASI PENERIMA BANTUAN SOSIAL BPNT DI DESA SLANGIT. In Jurnal Mahasiswa Teknik Informatika (Vol. 8, Issue 1).
Lestari, T. S., & Sirodj, D. A. N. (2022). Klasifikasi Penipuan Transaksi Kartu Kredit Menggunakan Metode Random Forest. Jurnal Riset Statistika, 1(2), 160–167. https://doi.org/10.29313/jrs.v1i2.525
Madaerdo Sotarjua, L., Budhi Santoso, D., Singaperbangsa Karawang Jl Ronggo Waluyo, U. H., Telukjambe Timur, K., Karawang, K., & Barat, J. (2022). PERBANDINGAN ALGORITMA KNN, DECISION TREE,*DAN RANDOM*FOREST PADA DATA IMBALANCED CLASS UNTUK KLASIFIKASI PROMOSI KARYAWAN. JURNAL INSTEK, 7(2), 192–200.
Pahlevi, O., & Handrianto, Y. (2023). Implementasi Algoritma Klasifikasi Random Forest Untuk Penilaian Kelayakan Kredit. Jurnal Infortech, 5(1). http://ejournal.bsi.ac.id/ejurnal/index.php/infortech
Primajaya, A., & Sari, B. N. (2018). Random Forest Algorithm for Prediction of Precipitation. Indonesian Journal of Artificial Intelligence and Data Mining (IJAIDM), 1(1), 27–31.
Satria, M. R. (2018). ANALISIS PERBANDINGAN PEMBERIAN KREDIT PEMILIKAN RUMAH (KPR) PADA BANK KONVENSIONAL DENGAN PEMBIAYAAN MURABAHAH (KPR) PADA BANK SYARIAH. Amwaluna: Jurnal Ekonomi Dan Keuangan Syariah, 2(1), 105–118. https://doi.org/10.29313/amwaluna.v2i1.2880
Suci Amaliah, Nusrang, M., & Aswi, A. (2022). Penerapan Metode Random Forest Untuk Klasifikasi Varian Minuman Kopi di Kedai Kopi Konijiwa Bantaeng. VARIANSI: Journal of Statistics and Its Application on Teaching and Research, 4(3), 121–127. https://doi.org/10.35580/variansiunm31
Takawira, O., & Muteba Mwamba, J. W. (2022). AN ANALYSIS OF SOVEREIGN CREDIT RATINGS USING RANDOM FOREST. INTERNATIONAL JOURNAL OF ECONOMICS AND FINANCE STUDIES, 14(1), 29–87. https://doi.org/10.34109/ijefs
Zailani, A. U., & Hanun, N. L. (2020). PENERAPAN ALGORITMA KLASIFIKASI RANDOM FOREST UNTUK PENENTUAN KELAYAKAN PEMBERIAN KREDIT DI KOPERASI MITRA SEJAHTERA. Infotech: Journal of Technology Information, 6(1), 7–14. https://doi.org/10.37365/jti.v6i1.61
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Lastri Widya Astuti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.