PENERAPAN DEEP LEARNING DALAM SISTEM INFORMASI GEOGRAFIS UNTUK ANALISIS DAMPAK PERUBAHAN IKLIM
DOI:
https://doi.org/10.34151/prosidingsnast.v1i1.5103Keywords:
climate change, deep learning, disaster risk, simulated dataAbstract
Climate change is increasingly contributing to the frequency and intensity of natural disasters, especially in archipelagic countries like Indonesia. This study aims to develop a predictive model for disaster risk levels using deep learning with climate and geographical variables. The simulated data includes variables such as average temperature, precipitation, humidity, wind speed, elevation, land cover type, and population density. The model was designed to classify disaster risk into four categories: no risk, low risk, moderate risk, and high risk. Data preprocessing involved normalization and an 80:20 train-test split. The model was trained using the Adam optimization algorithm with activation functions suitable for multi-class classification. Evaluation results show that the model can accurately predict disaster risk levels. This study demonstrates that simulated data can effectively support disaster risk prediction when observational data is limited. With further development using more comprehensive data, this model has the potential to be implemented in an early warning system to support decision-making in climate change mitigation in Indonesia.
References
Anggraheni, E., Sutjiningsih, D., Mulyono, B. H., Guswanto, Ningrum, I. A., & Yahya, D. M. (2022). Pengaruh Sebaran Spasial Hujan terhadap Pemilihan Metode Hujan Wilayah Berbasis Analisis Geospasial. Jurnal Teknik Sumber Daya Air, 2(2), 81–92. https://doi.org/10.56860/jtsda.v2i2.41
Deborah Kurniawati, Edy Prayitno, Dini Fakta Sari, S. N. P. (2019). Sentiment analysis of twitter use on policy institution services using naive bayes classifier method. Journal of International Conference Proceedings, 2(1), 33.
Hawa, N. N., Zakaria, S. Z. S., Razman, M. R., & Majid, N. A. (2021). Geography education for promoting sustainability in Indonesia. Sustainability (Switzerland), 13(8), 1–15. https://doi.org/10.3390/su13084340
Hidayat, E. Y., Hardiansyah, R. W., & Affandy, A. (2021). Analisis Sentimen Twitter untuk Menilai Opini Terhadap Perusahaan Publik Menggunakan Algoritma Deep Neural Network. Jurnal Nasional Teknologi Dan Sistem Informasi, 7(2), 108–118. https://doi.org/10.25077/teknosi.v7i2.2021.108-118
Moch, S., Suryawati, I., Tribhuwaneswari, A. B., & Teknik, F. (2022). Jurnal Teknik WAKTU Volume 20 Nomor 02 – Juli 2022 – ISSN : 1412 : 1867 kabupaten / kota sebagai salah satu dasar pengambilan kebijakan perencanaan daerah secara optimal ( Shofwan , 2020 ), sehingga diharapkan dalam penelitian ini menghasilkan gambaran sp, 20, 129–138.
Nugraha, A. L. (2018). Pemetaan Ancaman Banjir Kota Semarang Menggunakan Fuzzy Logic Dan Sig. Teknik, 39(1), 16. https://doi.org/10.14710/teknik.v39i1.16524
Nur, A., Juangga, A., Utami, R., & Wiyono, A. (2020). Analisis Kecenderungan dan Perubahan Hujan Ekstrem Harian di Pulau Madura. Jurnal Ilmu Lingkungan, 18(1), 89–96. https://doi.org/10.14710/jil.18.1.89-96
Polatgil, M. (2022). Investigation of the Effect of Normalization Methods on ANFIS Success: Forestfire and Diabets Datasets. International Journal of Information Technology and Computer Science, 14(1), 1–8. https://doi.org/10.5815/ijitcs.2022.01.01
Rahayu, M. P., & Farlina, Y. (2021). Penerapan Metode Naive Bayes Dalam Prediksi Penyebab Kecelakaan Kerja Cv. Deka Utama. Jurnal Larik: Ladang Artikel Ilmu Komputer, 1(1), 21–26. https://doi.org/10.31294/larik.v1i1.472
Ridwan, M., Yudo, A., Komunikasi, D., & Provinsi, S. (2020). Pengenalan Plat Kendaraan Bermotor Menggunakan Metode Gradien Karakter dan BPNN ( Backpropagation Neural Network ). J-COSINE, 4(2), 169–178.
Saputra, M. A., Rayes, M. L., & Nita, I. (2019). Pemetaan Prediksi Sebaran Kerentanan Longsor Di Kecamatan Tawangmangu, Kabupaten Karanganyar Menggunakan Pendekatan Fuzzy Logic. Jurnal Tanah Dan Sumberdaya Lahan, 6(2), 1353–1359. https://doi.org/10.21776/ub.jtsl.2019.006.2.16
Sari, D. F., Kurniawati, D., Prayitno, E., & Irfangi, I. (2019). Sentiment Analysis of Twitter Social Media to Online Transportation in Indonesia Using Naïve Bayes Classifier. Journal of International Conference Proceedings, 2(1). https://doi.org/10.32535/jicp.v2i1.410
Somantri, O., & Maharrani, R. H. (2022). Metode Penilaian Kekuatan Gempa Menggunakan Model Feature Selection M5-Prime Dan Linear Regression. Jurnal Informatika Polinema, 9(1), 45–50. https://doi.org/10.33795/jip.v9i1.989
Sudarma, I. M., & As-syakur, A. R. (2018). Dampak Perubahan Iklim Terhadap Sektor Pertanian Di Provinsi Bali. SOCA: Jurnal Sosial Ekonomi Pertanian, 12(1), 87. https://doi.org/10.24843/soca.2018.v12.i01.p07
Sun, S., Zhang, Z., Huang, B., Lei, P., Su, J., Pan, S., & Cao, J. (2021). Sparse-softmax: A Simpler and Faster Alternative Softmax Transformation. ArXiv Cornel University. Retrieved from http://arxiv.org/abs/2112.12433
Widiastutik, R., & Bukhori, I. (2018). Kajian Risiko Bencana Longsor Kecamatan Loano Kabupaten Purworejo. Jurnal Pembangunan Wilayah & Kota, 14(2), 109. https://doi.org/10.14710/pwk.v14i2.19258
Zulis Erwanto, A. H., & Aditya Wiralatief Sanjaya. (2021). Identification And Prediction Of Coastline Changes In Banyuwangi. ASTONJADRO: Jurnal Re Kayasa Sipil, 10(2), 333–345.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Edy Prayitno
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.