PENGENALAN BIBIT PEPAYA CALIFORNIA MENGGUNAKAN TEKSTUR URAT DAUN DENGAN METODE JST-PB DAN GLCM

Authors

  • Rohman Miansyah Universitas Indo Global Mandiri
  • Gasim Universitas Indo Global Mandiri
  • Mustafa Ramadhan Universitas Indo Global Mandiri

DOI:

https://doi.org/10.34151/prosidingsnast.v1i1.5099

Keywords:

GLCM, Sex, JST-PB, Seedling Recognition, California papaya, Leaf Vein Texture

Abstract

California papaya plants have three sex types: female, male and perfect. Early identification of the sex of papaya plants is very important to improve production efficiency. However, this process is difficult to do because sex characteristics only appear 4-6 months after flowering. This study aims to identify California papaya seedlings as male or female by analyzing the texture of leaf veins using the Back Propagation Artificial Neural Network (JST-PB) method and Gray Level Co-occurrence Matrix (GLCM). The JST-PB method is used to model complex patterns, while GLCM measures the spatial distribution of pixel intensity in leaf images. The dataset consists of 300 images of young California papaya leaves, with the number of each class as follows:  100 images for the female class, 100 images for the male class, and 100 images for the perfect class. All images were cropped to 200x200 pixels, focusing on young leaves, while old or dry leaves were not used. The results showed that the JST-PB method was able to achieve an overall accuracy rate of 71% in California papaya sex recognition. The accuracy for female papaya reached 76%, while that for male papaya was 66%. However, further testing showed that the perfect class could not be identified significantly, so this study concludes that two-class classification (female and male) is more reliable than three-class classification.These findings suggest that JST-PB has potential in California papaya sex recognition and classification, although improvements are needed especially in male papaya identification. Further research is recommended to increase the amount of training data, explore variations in JST architecture, and use different cross-validation methods or test datasets.

References

A, Satria, Gasim Gasim, and Desy Iba Ricoida. 2021. "Perbandingan Akurasi Pengenalan Kadar Semen Dan Pasir Berdasarkan Ukuran Citra Dengan Backpropagation." Jurnal algoritme 1(2): 121-33. doi: 10.35957/Algoritme.vli2.891.

Edi Ismanto, Eka Pandu Cynthia. 2017. "Jaringan Syaraf Tiruan Algoritma Backpropagation Dalam Memprediksi Ketersediaan Komoditi Pangan Provinsi Riau." Rabit: Jurnal Teknologi dan Sistem Informasi Univrab 2(2):196-209. doi: 10.36341/rabit. v212.152.

Harnila, Rani, and Ratri Dwi Atmaja. 2018. "Kalafikasi Retinopati Diabetik Non- Proliferatif Dan Proliferatif Berdasarkan Citra Fundus Menggunakan Metode Jaringan Syaraf Tiruab Propagansi Backpropagation."

Jumadi, Juju, and Devi Sartika. 2021. "Pengolahan Citra Digital Untuk Indentifikasi Objek Menggunakan Metode Hierarchical Agglomerative Clustering." (2).

Noflindawati, Nin, Aswaldi Anwar, Agus Sutanto, and Nfn Yusniwati. 2020. "Seleksi Marka SCAR untuk Identifikasi Dini Jenis Kelamin Tanaman Pepaya (The Selection of SCAR Markers for Early Sex Identification of Papaya)." Jurnal Hortikultura 30(1):1. doi: 10.21082/jhort, v30n1.2020.pl- 8.

Noflindawati, Noflindawati, Aswaldi Anwar, Yusniwati Yusniwati, and Agus Sutanto. 2019. "Karakter Morfologi dan Sitologi Bunga Pepaya Merah Delima." Jurnal Biologi UNAND 7(1):21. doi: 10.25077/jbioua.7.1.21- 26,2019,

Prabowo, Dedy Agung, and Dedy Abdullah. 2018. "Deteksi dan Perhitungan Objek Berdasarkan Warna Menggunakan Color Object Tracking." Pseudocode 5(2):85-91. doi: 10.33369/pseudocode.5.2.85-91.

Prasetyo, Yohanes Pracoyo Widi. 2023. "Simulasi Jaringan Saraf Tiruan dengan Neural Network Toolbox Tool (NFTool)." G-Tech: Jurnal Teknologi Terapan 7(4):1722-31. doi: 10.33379/gtech.v7i4.3381.

Situmorang, Grace Theresia, Agus Wahyu Widodo, and Muh Arif Rahman. 2019. "Penerapan Metode Gray Level Cooccurence Matrix (GLCM) untuk Ekstraksi Ciri pada Telapak Tangan." 3.

Suprianingsih, Desipriani, and Suprianingsih M. Fahzurrahman. 2022. "garuda3047156.pdf."

Universitas Muhammadiyah Sidoarjo, and Rohman Dijaya 2023. Buku Ajar Pengolahan Citra Digital. Umsida Press.

Wibowo, Feri, and Agus Harjoko, 2017. "Klasifikasi Mutu Pepaya Berdasarkan Ciri Tekstur GLCM Menggunakan Jaringan Saraf Tiruan." Khazanah Informatika Jurnal Ilmu Komputer dan Informatika 3(2):100-104. doi: 10.23917/khif.v3i2.4516.

Wikaria Gazali, Haryono Soeparno, and Jenny Ohliati, 2012. "Penerapan Metode Konvolusi Dalam Pengolahan Citra Digital." 12(2).

Yuhandri. 2019. "Perbandingan Metode Cropping Pada Sebuah Citra Untuk Mengambil Motif Tertentu Pada kain Songket Sumatra Barat."

Z. R. Mair, W. Cholil, E. Yulianti, D. Marcelina, Theresiawati, and I. N. Isnainiyah, "Convolutional Neural Network Analysis on Handwriting Patterns and Its Relationship to Personality: A Systematical Review," in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), Jakarta Selatan, Indonesia, 2023, pp. 308-312, doi: 10.1109/ICIMCIS60089.2023.10348999.

Downloads

Published

23-11-2024

Issue

Section

Articles