MODEL FORECASTING TREN KUNJUNGAN WISATAWAN DI DIY MENGGUNAKAN REGRESI LOGISTIK BINER

Authors

  • Erma Susanti Universitas AKPRIND Indonesia
  • Windyaning Ustyannie Universitas AKPRIND Indonesia
  • I Wayan Julianta Pradnyana Universitas AKPRIND Indonesia
  • Katherina Irene Dhamayanti Universitas AKPRIND Indonesia

DOI:

https://doi.org/10.34151/prosidingsnast.v1i1.5097

Keywords:

binary, forecasting, tourist visits, foreign, logistic regression

Abstract

The Special Region of Yogyakarta (DIY) is a province that has special features in terms of arts and culture, nature, culinary, shopping, and other tourism. Visits by both foreign and domestic tourists to DIY before the COVID pandemic and after the pandemic have fluctuated. The many choices of tourist attractions in DIY attract tourists to come. An increase or decrease in the number of tourists can affect various aspects of people's lives. An increase in tourist visits will affect congestion and traffic on the highway, while a decrease in the number of visits can affect regional income and the income of people who depend on tourism for their livelihood. In addition, the increase in the number of tourists also needs to be anticipated by the government to provide road infrastructure, buildings, city planning, traffic order, waste management, and so on. The existence of a forecasting model that can predict future tourist visits can help stakeholders make decisions to handle problems related to the impact of tourism on the community and to improve the governance of tourist visits. The use of a binary logistic regression algorithm in this case is used to predict the trend of an increasing or decreasing number of tourists for the next two years until 2026. Historical data of tourist visits from 2018 to 2024 from BPS is used for this study. The forecasting results show an increase in tourist visits in June 2025 and 2026. The evaluation results show the accuracy, precision, recall, and f1-score values of 1.0 (for the range 0-1). These results indicate that the forecasting model has a very good accuracy value.

 

References

Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression: Third Edition. In Applied Logistic Regression: Third Edition. https://doi.org/10.1002/9781118548387

Manullang, J., & Santoso, A. (2020). Prediksi Kunjungan Wisatawan Taman Nasional Gunung Merbabu dengan Time Series Forecasting dan LSTM. Jurnal Teknik Sipil, 11(2), 132–140. http://e-journal.uajy.ac.id/id/eprint/26642

Manurung, B. A., Gea, A., & Silalahi, A. P. (2024). Penerapan Algoritma Regresi Linear Untuk Memprediksi Jumlah Wisatawan. METHOSISFO: Jurnal Ilmiah Sistem Informasi, 4(1), 1–9. https://ejurnal.methodist.ac.id/index.php/methosisfo/article/view/2850

Mu’minin, F., Fauziah, F., & Gunaryati, A. (2022). Prediksi Kunjungan Wisatawan Mancanegara Melalui Pintu Udara Menggunakan ARIMA, Glmnet, dan Prophet. Techno. Com, 21(1), 149–157. https://publikasi2.dinus.ac.id/index.php/technoc/article/view/5695

Nawawi, A., Herawati, S., & Prastiti, N. (2021). Implementasi metode holt winter additive untuk prediksi kunjungan wisatawan nusantara kabupaten sumenep. Jurnal SimanteC, 10(1), 25–30. https://journal.trunojoyo.ac.id/simantec/article/view/12466

Putri, O., Poningsih, P., & Tambunan, H. S. (2021). Prediksi kunjungan wisatawan mancanegara ke indonesia menggunakan jaringan saraf tiruan dengan algoritma backpropagation. Kesatria: Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen),Kesatria: Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 2(1), 1–7. http://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/51

Rais, A., Rousyati, R., Thira, I., Kholifah, D., Purwanti, N., & Kristania, Y. (2020). Evaluasi Metode Forecasting pada Data Kunjungan Wisatawan Mancanegara ke Indonesia. EVOLUSI: Jurnal Sains Dan Manajemen, 8(2). https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/8971

Sari, M., & Agustini, D. (2024). Model Prediksi Kunjungan Wisata: Mengoptimalkan Arsitektur Algoritma Backpropagation untuk Prediksi Kunjungan Wisata Mancanegara (ASIA). Kesatria: Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 5(1), 240–244. http://www.pkm.tunasbangsa.ac.id/index.php/kesatria/article/view/332

Sovia, R., Yanto, M., & Melati, P. (2020). prediksi jumlah kunjungan wisata mancanegara dengan algoritma Backpropagation. Jurnal Media Informatika Budidarma, 4(2), 355–362. http://ejurnal.stmik-budidarma.ac.id/index.php/mib/article/view/2048

Sujarweni, W. V., & Utami, L. R. (2019). The Master Book of SPSS. In Start Up.

Utami, R., & Maulana, M. W. I. (2020). Visualisasi Prediksi Kunjungan Wisatawan Mancanegara Menggunakan Model Time Series. Joutica, 5(2), 356–362. https://jurnalteknik.unisla.ac.id/index.php/informatika/article/view/436

Yap, B. W., Rani, K. A., Rahman, H. A. A., Fong, S., Khairudin, Z., & Abdullah, N. N. (2014). An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets BT - Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). Lecture Notes in Electrical Engineering.

Downloads

Published

23-11-2024

Issue

Section

Articles