MODEL FORECASTING TREN KUNJUNGAN WISATAWAN DI DIY MENGGUNAKAN REGRESI LOGISTIK BINER
DOI:
https://doi.org/10.34151/prosidingsnast.v1i1.5097Keywords:
binary, forecasting, tourist visits, foreign, logistic regressionAbstract
The Special Region of Yogyakarta (DIY) is a province that has special features in terms of arts and culture, nature, culinary, shopping, and other tourism. Visits by both foreign and domestic tourists to DIY before the COVID pandemic and after the pandemic have fluctuated. The many choices of tourist attractions in DIY attract tourists to come. An increase or decrease in the number of tourists can affect various aspects of people's lives. An increase in tourist visits will affect congestion and traffic on the highway, while a decrease in the number of visits can affect regional income and the income of people who depend on tourism for their livelihood. In addition, the increase in the number of tourists also needs to be anticipated by the government to provide road infrastructure, buildings, city planning, traffic order, waste management, and so on. The existence of a forecasting model that can predict future tourist visits can help stakeholders make decisions to handle problems related to the impact of tourism on the community and to improve the governance of tourist visits. The use of a binary logistic regression algorithm in this case is used to predict the trend of an increasing or decreasing number of tourists for the next two years until 2026. Historical data of tourist visits from 2018 to 2024 from BPS is used for this study. The forecasting results show an increase in tourist visits in June 2025 and 2026. The evaluation results show the accuracy, precision, recall, and f1-score values of 1.0 (for the range 0-1). These results indicate that the forecasting model has a very good accuracy value.
References
Hosmer, D. W., Lemeshow, S., & Sturdivant, R. X. (2013). Applied Logistic Regression: Third Edition. In Applied Logistic Regression: Third Edition. https://doi.org/10.1002/9781118548387
Manullang, J., & Santoso, A. (2020). Prediksi Kunjungan Wisatawan Taman Nasional Gunung Merbabu dengan Time Series Forecasting dan LSTM. Jurnal Teknik Sipil, 11(2), 132–140. http://e-journal.uajy.ac.id/id/eprint/26642
Manurung, B. A., Gea, A., & Silalahi, A. P. (2024). Penerapan Algoritma Regresi Linear Untuk Memprediksi Jumlah Wisatawan. METHOSISFO: Jurnal Ilmiah Sistem Informasi, 4(1), 1–9. https://ejurnal.methodist.ac.id/index.php/methosisfo/article/view/2850
Mu’minin, F., Fauziah, F., & Gunaryati, A. (2022). Prediksi Kunjungan Wisatawan Mancanegara Melalui Pintu Udara Menggunakan ARIMA, Glmnet, dan Prophet. Techno. Com, 21(1), 149–157. https://publikasi2.dinus.ac.id/index.php/technoc/article/view/5695
Nawawi, A., Herawati, S., & Prastiti, N. (2021). Implementasi metode holt winter additive untuk prediksi kunjungan wisatawan nusantara kabupaten sumenep. Jurnal SimanteC, 10(1), 25–30. https://journal.trunojoyo.ac.id/simantec/article/view/12466
Putri, O., Poningsih, P., & Tambunan, H. S. (2021). Prediksi kunjungan wisatawan mancanegara ke indonesia menggunakan jaringan saraf tiruan dengan algoritma backpropagation. Kesatria: Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen),Kesatria: Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 2(1), 1–7. http://tunasbangsa.ac.id/pkm/index.php/kesatria/article/view/51
Rais, A., Rousyati, R., Thira, I., Kholifah, D., Purwanti, N., & Kristania, Y. (2020). Evaluasi Metode Forecasting pada Data Kunjungan Wisatawan Mancanegara ke Indonesia. EVOLUSI: Jurnal Sains Dan Manajemen, 8(2). https://ejournal.bsi.ac.id/ejurnal/index.php/evolusi/article/view/8971
Sari, M., & Agustini, D. (2024). Model Prediksi Kunjungan Wisata: Mengoptimalkan Arsitektur Algoritma Backpropagation untuk Prediksi Kunjungan Wisata Mancanegara (ASIA). Kesatria: Jurnal Penerapan Sistem Informasi (Komputer Dan Manajemen), 5(1), 240–244. http://www.pkm.tunasbangsa.ac.id/index.php/kesatria/article/view/332
Sovia, R., Yanto, M., & Melati, P. (2020). prediksi jumlah kunjungan wisata mancanegara dengan algoritma Backpropagation. Jurnal Media Informatika Budidarma, 4(2), 355–362. http://ejurnal.stmik-budidarma.ac.id/index.php/mib/article/view/2048
Sujarweni, W. V., & Utami, L. R. (2019). The Master Book of SPSS. In Start Up.
Utami, R., & Maulana, M. W. I. (2020). Visualisasi Prediksi Kunjungan Wisatawan Mancanegara Menggunakan Model Time Series. Joutica, 5(2), 356–362. https://jurnalteknik.unisla.ac.id/index.php/informatika/article/view/436
Yap, B. W., Rani, K. A., Rahman, H. A. A., Fong, S., Khairudin, Z., & Abdullah, N. N. (2014). An Application of Oversampling, Undersampling, Bagging and Boosting in Handling Imbalanced Datasets BT - Proceedings of the First International Conference on Advanced Data and Information Engineering (DaEng-2013). Lecture Notes in Electrical Engineering.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Erma Susanti
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.