ANALISIS SENTIMEN MENGGUNAKAN NBC DAN SVM UNTUK MENGETAHUI RESPON TERHADAP KINERJA PRESIDEN MELALUI MEDIA INSTAGRAM

Authors

  • Amir Hamzah Informatika Universitas Akprind Indonesia
  • Renna Yanwastika Ariyana Informatika Universitas Akprind Indonesia
  • Uning Lestari Informatika Universitas Akprind Indonesia,

DOI:

https://doi.org/10.34151/prosidingsnast.v1i1.5082

Keywords:

classification, presidential performance, NBC, SVM

Abstract

The president's performance can be revealed through the public's response to various presidential programs in the economic or industrial sector which are uploaded on the President's official Instagram media. The public's response to each uploaded post is interesting data to analyze. This research aims to conduct sentiment analysis of the public's response to the president's performance, by uploading the president's activities on Instagram using the Naive Bayes Classifier (NBC) and Support Vector Machine (SVM) methods.  A total of 18,660 responses to the President's 5 Instagram posts on economic and industrial activities between March and September 2024. The data was then filtered to just 15,306 comments which were determined as a dataset. Dataset labeling before classification is carried out using the lexicon based method. The research results show that sentiment towards the president's performance is 28.3% positive, 36.8% neutral and 34.9% negative. Meanwhile, the NBC and SVM classification results obtained showed an accuracy of 68.7%, precision of 68.5%, recall of 67.8% and F1-score of 68.2% for the NBC algorithm. The SVM algorithm produces an accuracy of 80.5%, a precision value of 80.5%, a recall value of 79.6%, and an F1-score value of 79.6%. It can be seen that the SVM algorithm is superior to the NBC algorithm in all classification parameters. From several training and testing compositions, it was also found that the best composition was the 70:30 composition. 

References

Anderson, M. and Auxier,B. (2021). “Social Media Use in 2021,” Pew Res. Cent., no. April, pp. 1–6, 2021, [Online]. Available: https://www.pewresearch.org/internet/2021/04/07/social-media-use-in-2021/

Chaterine,R..H. dan Prabowo.D.(2024). https://nasional.kompas.com/read/2024/10/04/16081911/survei-indikator-mayoritas-masyarakat-puas-kinerja-jokowi-selama-2-periode . di ases 5 Oktober 2024.

Cindy,A.M. (2023). “Jumlah Pengguna Instagram Indonesia Terbanyak ke-4 di Dunia,” Databoks.Katadata, vol. 2022, p. 1, [Online]. Available: https://databoks.katadata.co.id/datapublish/2023/05/04/jumlah-pengguna-instagram-indonesia-terbanyak-ke-4-di-dunia

Fadiyah, D. dan Simorangkir,S. (2019). Penggunaan Media Sosial Instagram dalam Membangun Citra Positif Presiden Joko Widodo pada Pilpres 2019. Jurnal of Political Issues. Vol.3. No.1. pp.13-27

Ichwan,M., Dewi,I.A. and Muharom, Z. (2018). Klasifikasi Support Vector Machine (SVM) Untuk Menentukan TingkatKemanisan Mangga Berdasarkan Fitur Warna. MIND Journal. Vol.3.No.2,pp. 16-24

Kartini, J. Syahrina, N. Siregar, and N. Harahap, “Penelitian Tentang Instagram,” Maktab. J. Perpust. dan Inf., vol. 2275, pp. 20–26, 2022, [Online]. Available: https://ummaspul.e-journal.id/RMH/article/view/4466

Khaira,U.R., Johanda, P. E. P. Utomo, and T. Suratno.(2020). “Sentiment Analysis Of Cyberbullying On Twitter Using SentiStrength,” Indones. J. Artif. Intell. Data Min., vol. 3, no. 1, p. 21-29

Lay,R. (2024). Naive Bayes Classifier Explained: Applications and Practical Problems. Diases tanggal 20 Oktober 2024 dari https://www.analyticsvidhya.com/blog/2017/09/naive-bayes-explained/

Mahardika, Y.S. dan Zuliarso,E.(2018). Analisis Sentimen Terhadap Pemerintahan Joko Widodo Pada Media Sosial Twitter Menggunakan Algoritma Naives Bayes Classifier. Prosiding SINTAK. Pp-417-429

Mandala, A. (2024). Peranan Media Sosial dalam Membangun Citra Positif Lembaga Pemerintah. Prosiding Seminar Nasional Komunikasi (SENAKOM). Vol.1.No.1

Mao,Y., Liu,Q. and Zhang, Y. (2024). Sentiment analysis methods, applications, and challenges: A systematicliterature review. Journal of King Saud University - Computer and Information Sciences, Vol.36.issue.4,231-245

Mukhroman, I., Ahmad,I. dan Gumelar R.G. (2024). Pembentukan Opini Publik Pada Pemilihan Umum 2024 (Studi Kasus Opini Publik – Survey Elektabilitas Capres-Cawapres 2024 Pasca Debat Pertama). JOURNAL SYNTAX IDEA. Vol 6 No.6. 2472-2482.

Nehe,P.H., Berutu,S.S. dan Budiati,H.(2024). Analisis Sentimen Opini Masyarakat Terhadap Presiden Jokowi Sebelum Dan Sesudah Pilpres 2024 Menggunakan Metode Naive Bayes Classification. JUTISI:Jurnal Ilmiah Teknik Informatika dan Sistem Informasi. Vol 13.No.1.pp 451-463

Nufus,W.H.(2024). https://news.detik.com/berita/d-7588975/survei-lsi-denny-ja-80-8-responden-puas-kinerja-presiden-jokowi . Diases 16 Oktober 2024

Rohim,A.N. dan Pratama,A.R. (2022) Analisis Sentimen Publik di Media Sosial Instagram atas Kinerja Presiden Joko Widodo. Automata. Vol 3. No.2.

Shafri,H.Z.M. dan Ramle,F.S.H.(2009). Perbandingan Klasifikasi Support Vector Machine dan Decision Tree Menggunakan Data Satelit Pulau Langkawi. Information Technology Journal, 8: 64-70.

Shedriko (2021). Perbandingan Algoritma SVM dan k-NN dalam Mengklasifikasi Kelulusan Mahasiswa Pada Suatu Mata Kuliah. STRING (Satuan Tulisan Riset dan Inovasi Teknologi) .Vol. 6 No. 2 D115-128.

Downloads

Published

23-11-2024

Issue

Section

Articles