IMPLEMENTASI ALGORTIMA GENETIKA UNTUK OPTIMALISASI RUTE PENGIRIMAN PESANAN DI RESTO PAK LANJAR SLEMAN

Authors

  • Anang Hidayat Program Studi Informatika STMIK EL RAHMA Yogyakarta
  • Herdiesel Santoso* Program Studi Sistem Informasi STMIK EL RAHMA Yogyakarta

DOI:

https://doi.org/10.34151/prosidingsnast.v1i1.5080

Keywords:

Genetic Algorithm, Google Maps API, Order Delivery, Route Optimization, Traveling Salesman Problem

Abstract

Multi-destination travel is one of the problems in the Traveling Salesman Problem (TSP), which has a large problem space if solved combinatorially. This study aims to design and implement a Genetic Algorithm model to provide route recommendations for order deliveries at Resto Pak Lanjar, Sleman. The proposed Genetic Algorithm takes into account both symmetric and asymmetric distances. The route recommendations consider not only the distance but also the travel time, which is obtained using Google Maps API. The encoding scheme uses permutation encoding, parent selection is done through roulette-wheel selection, with order crossover as the crossover method and swap mutation as the mutation method. The algorithm also ensures that the best individual from a given generation is not lost during the evolutionary process. This study fills the gap in the literature, especially in applying Genetic Algorithms for route optimization in small restaurants by considering both time and distance factors. The experimental results show that for fewer than 8 objects, the optimal population size consists of 30 individuals, while for more than 8 objects, the optimal population size consists of 180 individuals. The stopping criterion is set when the highest fitness value remains unchanged for 30 consecutive generations. The optimal combination of crossover and mutation probabilities is {0.5:0.5}. 

References

Ardiansyah, H., & Junianto, M. B. S. (2022). Penerapan Algoritma Genetika untuk Penjadwalan Mata Pelajaran. Jurnal Media Informatika Budidarma, 6(1), 329. https://doi.org/10.30865/mib.v6i1.3418

Cia, N. A. (2024). IMPLEMENTASI ALGORITMA GENETIKA DALAM REKOMENDASI MAKANAN UNTUK PENDERITA OBESITAS. Jurnal Informatika Dan Teknik Elektro Terapan, 12(2). https://doi.org/10.23960/jitet.v12i2.3993

Denny Hermawanto. (2003). Algotima Genetika dan Contoh Aplikasinya. http://dennyhermawanto.webhop.org

Santoso H. (2016). Algoritma Genetika Untuk Memberikan Rekomendasi Rute Perjalanan Multi Destinasi di Daerah Istimewa Yogyakarta. STMIK El Rahma Yogyakarta.

Pradita, H., & Arifin, J. (2023). Sistem Informasi Geografis Pemetaan Penjual Sayur Segar di Mojokerto Menggunakan Google Map API. Julyxxxx, x, No.x, 1–5.

Santoso, H., & Sanuri, R. (2019). Implementasi Algoritma Genetika dan Google Maps API Dalam Penyelesaian Traveling Salesman Problem with Time Window (TSP-TW) Pada Penjadwalan Rute Perjalanan Divisi Pemasaran STMIK El Rahma. Teknika, 8(2), 110–118. https://doi.org/10.34148/teknika.v8i2.187

Sofia Tussoliha. (2019). Optimasi Multi Traveling Salesman Problem Menggunakan Algoritma Genetika pada Distribusi Keripik Tempe “Putra Ridhlo” Di Malang. Universitas Islam Negri Maulana Malik Ibrahim.

Sugiyatno, Syafrianto, A., & Falahi, Z. (2023). Sistem Informasi Manajemen Penelitian Dan Pengabdian Masyarakat menggunakan frame work Laravel di Stmik El Rahma. Jurnal Informatika Komputer, Bisnis Dan Manajemen, 21(1), 69–79. https://doi.org/10.61805/fahma.v21i1.26

Suyanto. (2011). Artificial Intelligence (Revisi Edisi). Informatika Bandung.

Widayani, W., Pratama, D. A., Pratama, R. D., Kusumajaya, E. T., & Dharma, A. (2023). Pemanfaatan Metode Heuristik Travelling Salesman Problem With Time Windows Pada Rute Antar Jemput Laundry Dengan Algoritma Genetika. Jurnal Informatika Komputer, Bisnis Dan Manajemen, 17(1), 1–10. https://doi.org/10.61805/fahma.v17i1.76

Wulandari, S., & Helmi, Y. (2019). Penyelesaian Multiple Travelling Salesman Problem (Multi-Tsp) Dengan Metode Order Crossover Dalam Algoritma Genetika. In Buletin Ilmiah Mat. Stat. dan Terapannya (Bimaster) (Vol. 08, Issue 2).

Downloads

Published

23-11-2024

Issue

Section

Articles