DETEKSI PENYAKIT DIABETES RETINOPATHY MENGGUNAKAN CITRA DIGITAL DENGAN METODE CONVOLUTIONAL NEURAL NETWORK (CNN)
DOI:
https://doi.org/10.34151/prosidingsnast.v1i1.5021Keywords:
Diabetic Retinopathy, Digital Image, Convolutional Neural Network (CNN), VGG-19Abstract
Diabetic retinopathy (DR) is a serious complication of diabetes that can lead to blindness if not detected and treated early. Conventional screening methods involve fundus examination by trained medical personnel, which is time-consuming and costly. This study proposes an automated detection approach for diabetic retinopathy using digital fundus images and Convolutional Neural Network (CNN) methods. CNN, a deep learning architecture, is utilized to automatically learn and extract features from retinal fundus images. The dataset used for detection and classification consists of 5 classes: mild, moderate, no_DR, proliferative, and severe. The image training process employs the VGG-19 model trained for 100 epochs, achieving a commendable accuracy of 72% with a dataset of 3000 fundus images split into a 70:30 ratio for training and validation (70% for training, 30% for validation). The diagnosis results include 2160 images classified as DR and 840 images classified as NDR. Training with an 80:20 data split (80% for training, 20% for validation) yielded an accuracy of 69%, with 2070 images diagnosed as DR and 930 images as NDR.
References
Anisa Nur Azizah. (2021). Klasifikasi Penyakit Diabetic Retinopathy Menggunakan Metode Convolutional Neural Network (CNN) Model Deep Residual Network (Resnet).
Alzubaidi, L., Zhang, J., Humaidi, A. J., Al-Dujaili, A., Duan, Y., Al-Shamma, O., Santamaría, J., Fadhel, M. A., Al-Amidie, M., & Farhan, L. (2021). Review of deep learning: concepts, CNN architectures, challenges, applications, future directions. Journal of Big Data, 8(1).
Frangky Handono, S., Tri Anggraeny, F., & Rahmat, B. (2020). Implementasi Convolutional Neural Network (CNN) Untuk Deteksi Retinopati Diabetik. In Jurnal Informatika dan Sistem Informasi (JIFoSI) (Vol. 1, Issue 1).
Ardyansyah, M. A., & Gunawansyah. (2023). Sistem Deteksi Level Diabetic Retinopathy Melalui Citra Fundus Mata dengan Menggunakan Metode CNN (Convolutional Neural Network). G-Tech: Jurnal Teknologi Terapan, 7(4), 1673–1682. https://doi.org/10.33379/gtech.v7i4.3332
Purnama, R. F. N. (2023). Retinopati Diabetik : Manifestasi Klinis, Diagnosis, Tatalaksana dan Pencegahan. Lombok Medical Journal, 2(1), 39–42. https://doi.org/10.29303/lmj.v2i1.2410
Rizal, S., Ibrahim, N., Pratiwi, N. K. C., Saidah, S., & Fu’adah, R. Y. N. (2020). Deep Learning untuk Klasifikasi Diabetic Retinopathy menggunakan Model EfficientNet. ELKOMIKA: Jurnal Teknik Energi Elektrik, Teknik Telekomunikasi, & Teknik Elektronika, 8(3), 693.
Sarker, I. H. (2021). Deep Learning: A Comprehensive Overview on Techniques, Taxonomy, Applications and Research Directions. In SN Computer Science (Vol. 2, Issue 6). Springer.
Sulaeman, A. A., & Dwi, N. (2022). Implementasi Neural Network Untuk Mendeteksi Penyakit Diabetes Pada Retinopati. Jurnal Teknologi Pelita Bangsa, 13(4).
Zahir, M., & Adi Saputra, R. (2024). Deteksi Penyakit Retinopati Diabetes Menggunakan Citra Mata Dengan Implementasi Deep Learning CNN (Vol. 18, Issue 1).
Z. R. Mair, W. Cholil, E. Yulianti, D. Marcelina, Theresiawati, and I. N. Isnainiyah, "Convolutional Neural Network Analysis on Handwriting Patterns and Its Relationship to Personality: A Systematical Review," in 2023 International Conference on Informatics, Multimedia, Cyber and Informations System (ICIMCIS), Jakarta Selatan, Indonesia, 2023.
Z. R. Mair and M. H. Irfani, "Permainan INGBAS (Gunting, Batu, Kertas) Menggunakan Arsitektur Convolutional Neural Network," Jurnal Teknik Informatika dan Sistem Informasi, vol. 10, no. 1, pp. 4322, Mar. 2023, JATISI.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Nurohman, Rudi Heriansyah, Dwi Asa Verano, Zaid Romegar Mair
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.