PENGUKURAN GELEMBUNG MIKRO MENGGUNAKAN ALGORITMA HOUGH CIRCLE TRANSFORM
DOI:
https://doi.org/10.34151/prosidingsnast.v1i1.4957Keywords:
hough circle transform, image processing, microbubbleAbstract
An analysis of the Hough transform algorithm as a microbubble measurement method with manual annotation and accuracy testing methods was conducted. Existing microbubble measurement methods are unable to measure bubble sizes smaller than 150 μm and have equipment that is not compact enough. The Hough transform algorithm may be a more optimized microbubble measurement method than the existing microbubble measurement methods. This research aims to apply and test the Hough circle transform algorithm as a microbubble measurement method. This research was conducted with 5 samples, each sample lasted 10 seconds. In this study, it can be concluded that the Hough Circle Transform algorithm, as a method for measuring microbubbles, is able to detect bubbles with sizes ranging from 0.11 to 0.36 µm, with an average size of 0.20 µm. The average accuracy across the five data samples is 98%.
References
Al-Lashi, R. S., Gunn, S. R., & Czerski, H. (2016). Automated Processing of Oceanic Bubble Images for Measuring Bubble Size Distributions underneath Breaking Waves. Journal of Atmospheric and Oceanic Technology, 33(8), 1701–1714. https://doi.org/10.1175/JTECH-D-15-0222.1
Browning, R. J., Aron, M., Booth, A., Rademeyer, P., Wing, S., Brans, V., Shrivastava, S., Carugo, D., & Stride, E. (2020). Spectral Imaging for Microbubble Characterization. Langmuir, 36(2), 609–617. https://doi.org/10.1021/acs.langmuir.9b03828
Couto, H. J. B., Nunes, D. G., Neumann, R., & França, S. C. A. (2009). Micro-bubble size distribution measurements by laser diffraction technique. Minerals Engineering, 22(4), 330–335. https://doi.org/10.1016/j.mineng.2008.09.006
Geetha, M., Bonthula, S., Al-Maadeed, S., Al-Lohedan, H., Rajabathar, J. R., Arokiyaraj, S., & Sadasivuni, K. K. (2023). Research Trends in Smart Cost-Effective Water Quality Monitoring and Modeling: Special Focus on Artificial Intelligence. Water, 15(18). https://doi.org/10.3390/w15183293
Gonzalez, R. C., & Woods, R. E. (2007). Digital image processing (3. ed). Pearson/Prentice Hall.
Miwa, T., Yamakoshi, Y., & Mashiyama, T. (2010). Optical Scattering Measurement of Microbubble Cloud Dynamics in Ultrasound. Japanese Journal of Applied Physics, 49, 07HF19.
Pizer, S. M., Amburn, E. P., Austin, J. D., Cromartie, R., Geselowitz, A., Greer, T., Ter Haar Romeny, B., Zimmerman, J. B., & Zuiderveld, K. (1987). Adaptive histogram equalization and its variations. Computer Vision, Graphics, and Image Processing, 39(3), 355–368. https://doi.org/10.1016/S0734-189X(87)80186-X
Revansyah, M. A., Men, L. K., Setianto, S., F, F., Safriani, L., & Aprilia, A. (2023). ANALISIS TDS, PH, DAN COD UNTUK MENGETAHUI KUALITAS AIR DI DESA CILAYUNG. Jurnal Material Dan Energi Indonesia, 12(02), 43. https://doi.org/10.24198/jme.v12i02.41305
Russell, P., Venning, J., Pearce, B. W., & Brandner, P. A. (2020). Calibration of Mie scattering imaging for microbubble measurement in hydrodynamic test facilities. Experiments in Fluids, 61(4), 93. https://doi.org/10.1007/s00348-020-2927-7
Utomo, L., Kusnadi, H., & Idris, N. (2021). PERANCANGAN SISTEM KENDALI KADAR OKSIGEN DALAM AIR MENGGUNAKAN SENSOR DO METER. PROSIDING SENANTIAS: Seminar Nasional Hasil Penelitian Dan Pengabdian Kepada Masyarakat, 1(1), 31–40.
W.O. Barbosa, & Vieira, A. (2019). On the Improvement of Multiple Circles Detection from Images using Hough Transform. TEMA, 20, 331–342. https://doi.org/10.5540/tema.2019.020.02.0331
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Yusnan Hasani Siregar
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.