ANALISIS KOMPREHENSIF KARAKTERISTIK GEOLOGI DAN GEOKIMIA MINERALISASI PORFIRI CU-AU DI PRIGI, JAWA TIMUR
DOI:
https://doi.org/10.34151/prosidingsnast.v1i1.3411Keywords:
Alteration, Mineralization, Stockwork, Porphyry, PrigiAbstract
This research focuses on understanding porphyry Cu-Au deposits in the Oligocene-Miocene Sunda-Banda magmatic arc, specifically in Prigi Village, Watulimo District, Trenggalek Regency, East Java. The region, located on an ancient volcanic circular structure within this metallogenically significant arc, holds potential for porphyry Cu-Au deposits. The study uses surface geological mapping, laboratory analyses (petrography, mineragraphy, AAS), and report preparation. Alteration in the area is classified into five zones based on mineral associations: propylitic (chlorite-epidote±carbonate), potassic (magnetite-biotite-sericite±chlorite), SCC (sericite-clay-chlorite-magnetite), phyllic (sericite-illite±pyrite-quartz), and argillic (illite-smectite±quartz). Ore minerals include sulfides like chalcopyrite, bornite, covellite, chalcocite, magnetite, pyrite, and gold, and oxides such as malachite, hematite, goethite, and jarosite. AAS analysis shows copper content of 0.09% and 0.02%, and gold content of 0.9 ppm and 0.04 ppm in samples LP 93 A and 94, respectively. The study area also features porphyry stockwork veins, classified as type A (granular quartz±pyrite-chalcopyrite), type M (quartz-magnetite±chalcopyrite), type B (comb quartz-centerline chalcopyrite-bornite-pyrite), type C (chalcopyrite±quartz), and type D (pyrite-quartz). The porphyry deposits experienced three stages of alteration and mineralization: early mineralization with diorite intrusion and prograde alteration, intermineral phase with porphyritic andesite intrusion, and a late retrograde alteration phase linked to the final intrusion.
References
Aldan, F. A., Idrus, A., Takahashi, R., & Kaneko, G. (2022). High‐sulfidation epithermal–porphyry transition in the Kumbokarno Prospect, Trenggalek district, East Java, Indonesia: Constraints from mineralogy, fluid inclusion, and sulfur isotope studies. Resource Geology, 72(1), e12289.
Bakosurtanal. (2000). Peta Rupabumi Digital Indonesia dengan skala 1:25000, Edisi 1, Lembar 1507-532, Daerah Kampak.
Bakosurtanal. (2001). Peta Rupabumi Digital Indonesia dengan skala 1:25000, Edisi 1, Lembar 1507-514, Daerah Prigi.
Berger, B. R., Ayuso, R. A., Wynn, J. C., & Seal, R. R. (2008). Preliminary model of porphyry copper deposits (Open-File Report 2008–1321). U.S. Geological Survey.
Corbett, G. J., & Leach, T. M. (1996). Southwest Pacific Rim gold–copper system: Structure, alteration and mineralization (Workshop manual). 185 pp.
Guilbert, J. M. (1984). Recent advances in porphyry base metal deposit research. In Geology and Metallogeny of Copper Deposits: Proceedings of the Copper Symposium, 27th International Geological Congress (pp. xx-xx). Moscow, 1984. Berlin, Heidelberg: Springer Berlin Heidelberg.
Gustafson, L. B., & Hunt, J. P. (1975). The porphyry deposit at El Salvador, Chile. Economic Geology, 70, 857-912.
Idrus, A., Kaneko, G., Rahmalia, T., Takahashi, R., & Aldan, F. A. (2021). Geology and ore mineralization of the newly discovered Tasikmadu porphyry copper-gold prospect in Watulimo sub-district, southern Trenggalek, Java Island, Indonesia.
Kaneko, G. (2019). Characteristics and ore-forming conditions of the Tasikmadu porphyry copper-gold prospect, Trenggalek district, East Java, Indonesia. [Unpublished bachelor’s thesis]. Akita University, Japan.
Kresna. (2017). Geologi, alterasi hidrotermal, dan mineralisasi porfiri tembaga-emas di daerah Desa Tasikmadu, Kecamatan Watulimo, Kabupaten Trenggalek, Provinsi Jawa Timur. Skripsi, Teknik Geologi, Universitas Gajah Mada.
Maryono, A., Harrison, R. L., Cooke, D. R., Rompo, I., & Hoschke, T. G. (2018). Tectonics and geology of porphyry Cu-Au deposits along the eastern Sunda magmatic arc, Indonesia. Economic Geology, 113(1), 7-38.
Maryono, A. (2013). Porphyry Cu-Au Deposit Short Course. Bali.
Oan, M., & Watania, L. (2022). Potensi endapan porfiri (Cu-Au) dan transisi endapan epitermal daerah Desa Sidomulyo, Kecamatan Pule, Kabupaten Trenggalek, Provinsi Jawa Timur. Seminar.
Purwanto, H. S. (1997). Analisis dan genesa pembentukan struktur geologi pada batuan berumur Oligosen-Miosen di daerah Pacitan dan sekitarnya Kabupaten Pacitan, Jawa Timur. [Unpublished dissertation]. Institut Teknologi Bandung, Indonesia.
Samodra, et al. (1992). Peta Geologi Lembar Tulungagung dengan skala 1:100,000, nomor 1057-5. Pusat Penelitian dan Pengembangan Geologi, Bandung.
Sillitoe, R. H. (1995). Exploration of porphyry copper lithocaps. In J. L. Mauk & J. D. St George (Eds.), Pacific Rim Congress 1995, Proceedings (pp. 527-532). Parkville: Australasian Institute of Mining and Metallurgy.
Sillitoe, R. H. (2010). Porphyry copper system. Economic Geology, 105, 3-41.
Sillitoe, R. H., & Hedenquist, J. W. (2003). Linkages between volcanotectonic settings, ore fluid compositions, and epithermal precious metal deposits. In Special Publication 10 (pp. 315-343). Society of Economic Geologists.
Sribudiyani, et al. (2003). The collision of the East Java Microplate and its implication for hydrocarbon occurrences in the East Java Basin. Proceedings of Indonesian Petroleum Association, Twenty-Ninth Annual Convention & Exhibition.
Takahashi, R., Shingo, Y., Imai, A., Watanabe, K., Harijoko, A., Warmada, I. W., Idrus, A., Setijadji, L. D., Phoumephone, P., Schersten, A., & Page, L. (2014). Epithermal gold mineralization in the Trenggalek district, East Java, Indonesia. Resource Geology, 64, 149–166.
Van Bemmelen, R. W. (1949). The geology of Indonesia.
Kaneko, G., & Idrus, A. (2021). Structural controls on copper-gold mineralization in southern Trenggalek, East Java. Indonesian Journal of Geosciences, 8(2), 75-90.
Sillitoe, R. H. (2013). Links between porphyry copper systems and high-sulphidation deposits in Indonesia. Proceedings of the Southeast Asian Mineral Resources Conference.
Imai, A., et al. (2022). Advanced argillic alteration and Cu-Au geochemistry at the Buluroto Prospect, Trenggalek. Resource Exploration Journal, 12(4), 45-59.
GeoData Solutions. (2021). Integrated geophysical surveys in Trenggalek: Analyzing subsurface magnetic anomalies. Exploration Insights.
Indonesian Ministry of Energy and Mineral Resources (2022). National mineral exploration summary: Focus on Java Island. Annual Report.
Samodra, H., et al. (2019). Structural lineaments and their relation to mineral deposits in East Java. Geological Review, 7(1), 25-38.
Tjahjadi, N., et al. (2018). Hydrothermal alteration and metal zoning in the Watulimo district. Indonesian Journal of Mineral Resources, 5(2), 102-120.
Warmada, I. W. (2021). Regional tectonics and its control on mineralization patterns in Java. Geological Society of Indonesia Symposium Proceedings.
Page, L., et al. (2020). Evolution of magmatic-hydrothermal systems in Indonesia: Implications for Cu-Au exploration. Journal of Economic Geology, 115(3), 125-140.
Sillitoe, R. H. (2018). Porphyry Cu-Au exploration: Insights from Indonesia. Society of Economic Geologists Special Paper.
Takahashi, R., et al. (2019). New geochemical insights into Cu-Au deposits in East Java. Journal of Southeast Asian Geoscience.
Corbett, G. J., & Leach, T. M. (2015). Advances in alteration mapping for porphyry systems in SE Asia. Mining and Exploration Journal.
Idrus, A., & Kaneko, G. (2021). Hydrothermal geochemistry of porphyry systems in East Java. Trenggalek Exploration Bulletin.
Downloads
Published
Issue
Section
License
Copyright (c) 2024 Augie Arisna Firmansyah, Radhitya Adzan Hidayah, Subhan Arif
This work is licensed under a Creative Commons Attribution-ShareAlike 4.0 International License.