Komparasi Desain Alat Penukar Panas Tipe Air-Cooled

Authors

  • Muhammad Ikhsan Kamil Universitas Singaperbangsa Karawang
  • Dessy Agustina Sari Universitas Singaperbangsa Karawang

DOI:

https://doi.org/10.34151/jurtek.v16i2.4512

Keywords:

air-cooled heat exchanger, fin, fouling factor, heat transfer, tube bundle

Abstract

The discussion regarding detailed comparisons of air-cooled heat exchanger designs using mathematical equation calculations was carried out based on several literature sources related to heat exchanger design using simulation model calculations in the Aspen EDR V10 software.. This ACHE-type heat exchanger is designed to carry out processes with hot fluid in the form of saturated water vapor at a pressure of 2 bar and cold fluid in the form of air at a pressure of 1,101 bar. The saturated water vapor used has a temperature of 251,2oF, and the air used has a temperature of 84,2oF. The variables used for comparison are the performance parameters of the heat exchanger, which include the log mean temperature difference, pressure drop (ΔP), fouling factor (RD), heat transfer rate (Q), and overall heat transfer coefficient (U). The calculation results show that the mathematical model calculations and the simulation model in the software have differences, but that does not change the fact that the two calculation models produce tool performance parameter values that are in accordance with operating standards when viewed from the pressure drop value, fouling factor value, and heat transfer coefficient value. Overall, if you look at the type of fluid used in the process,

Downloads

Download data is not yet available.

Author Biographies

Muhammad Ikhsan Kamil, Universitas Singaperbangsa Karawang

Program Studi S-1 Teknik Kimia

Dessy Agustina Sari, Universitas Singaperbangsa Karawang

Program Studi S-1 Teknik Kimia

References

Amir, F., & Syuhada, A. (2013). Pemodelan dan simulasi perpindahan panas padak olektor surya pelat datar. Jurnal Ilmu Hukum Pascasarjana Universitas Syiah Kuala, 1(4), 32–38.

AspenTech, A. (2023). Aspen Exchanger Design and Rating. https://www.aspentech.com/en/products/engineering/aspen-exchanger-design-and-rating

Bi, Y., & Ju, Y. (2021). Design and analysis of CO2 cryogenic separation process for the new LNG purification cold box. International Journal of Refrigeration, 130, 67–75.

Bizzy, I., & Setiadi, R. (2013). Studi perhitungan alat penukar kalor tipe shell and tube dengan program heat transfer research inc (HTRI). Jurnal Rekayasa Mesin, 13(1), 67–77.

Coker, A. K. (2015). Ludwig’s applied process design for chemical and petrochemical plants (4th ed.). Elsevier Inc.

Doodman, A. R., Fesanghary, M., & Hosseini, R. (2009). A robust stochastic approach for design optimization of air-cooled heat exchangers. Applied Energy, 86, 1240–1245.

Evenko, V. I. (2002). Optimizing air-cooled heat exchanger tube bundle parameters. Chemical and Petroleum Engineering, 38(1–2), 41–47.

Fitria, I. A., Sari, D. A., Fahriani, V. P., & Djaeni, M. (2022). Shell and tube heat exchanger fouling factor via Heat Transfer Research Inc (HTRI) software. Reka Buana: Jurnal Ilmiah Teknik Sipil dan Teknik Kimia, 7(2), 104–113.

Foust, A. S., Wenzel, L. A., Clump, C. W., Maus, L., & Andersen, L. B. (1962). Principles of unit operations. John Wiley & Sons Inc.

Galih Putra Baskara. (2023). Perancangan alat penukar panas (APK) tipe U dengan memanfaatkan panas gas buang menggunakan simulasi CFD. Jurnal Ilmiah Wahana Pendidikan, 9(2), 197–206.

Harydary, J. (2019). Chemical process design and Aspen Plus and Aspen Hysys application. John Wiley & Sons Inc.

Janaun, J., Kamin, N. H., Wong, K. H., Tham, H. J., Kong, V. V., & Farajpourlar, M. (2016). Design and simulation of heat exchangers using Aspen HYSYS, and Aspen exchanger design and rating for paddy drying application. IOP Conference Series: Earth and Environmental Science, 36, 1–8.

Kern, D. Q. (1950). Process heat transfer.

Kharisma, A. A. (2020). Perancangan heat exchanger tipe shell dan tube secara metode matematis dan simulasi software. Jurnal Rekayasa Mesin, 20(2), 27–34.

Kiswoyo, E., & Ramadhan, A. I. (2017). Perancangan dan validasi desain alat penukar kalor tipe shell and tube menggunakan computational fluid dynamics. Dinamika Jurnal Ilmiah Teknik Mesin, 8(2), 39–46.

Lestari, R. S. D., & Sari, D. K. (2018). Pemodelan matematis dan simulasi perpindahan panas pada fin heat exchanger. Jurnal Teknika, 14(1), 29–38.

Lez, M. T. G., Petracci, N. C., & Urbicain, M. J. (2001). Air-cooled heat exchanger design using successive quadratic programming (SQP). Heat Transfer Engineering, 22, 11–16.

Manassaldi, J. I., Scenna, N. J., & Mussati, S. F. (2014). Optimization mathematical model for the detailed design of air-cooled heat exchangers. Energy, 64, 734–746.

Park, H., Roh, J., Oh, K. C., Cho, H., & Kim, J. (2022). Modeling and optimization of water mist system for effective air-cooled heat exchangers. International Journal of Heat and Mass Transfer, 184, 1–14.

Pieve, M., & Salvadori, G. (2011). Performance of an air-cooled steam condenser for a waste-to-energy plant over its whole operating range. Energy Conversion and Management, 52(4), 1908–1913.

Salimpour, M. R., & Bahrami, Z. (2011). Thermodynamic analysis and optimization of air-cooled heat exchangers. Heat and Mass Transfer, 47(1), 35–44.

Sari, D. A., Soepryanto, A., & Burhanuddin, S. (2016). Re-design electric submersible pump pada PT Chevron Pacific Indonesia – Minas Pekanbaru. Barometer, 1(1), 25–33.

Serth, R. W., & Lestina, T. G. (2014). Process heat transfer: Principles, applications and rules of thumb (2nd ed). Elsevier.

Sutardi, M. P., Fardiansyah, M. I., Fauzia, F., & Sari, D. A. (2020). Program simulasi Aspen Hysis bagi mahasiswa teknik kimia di semester awal. Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, 1, 1370–1373.

Taufiq, T. (2015). Kajian eksperimental unjuk kerja heat exchanger double pipe. Malikussaleh Journal of Mechanical Science and Technology, 3(2), 17–21.

Ulfa, V. S., Kharisma, H. D., & Sari, D. A. (2020). Optimasi akademisi dan mata kuliah teknik kimia melalui peran praktisi industri. Prosiding Seminar Nasional Universitas Islam Syekh Yusuf, 1, 1379–1383.

Widiawaty, C. D., Gunadi, G. G. R., & Syuriadi, A. (2017). Pemodelan dan analisis kinerja shell and tube heat exchanger dengan metode CFD. Jurnal Poli-Teknologi, 16(3), 239–244.

Yaws, C. L. (1999). Chemical properties handbook: Physical, thermodynamics, environmental, transport, safety, and health related properties for organic and inorganic chemicals. McGraw-Hill Companies.

Published

2023-12-06

How to Cite

Ikhsan Kamil, M. ., & Agustina Sari, D. . (2023). Komparasi Desain Alat Penukar Panas Tipe Air-Cooled. Jurnal Teknologi, 16(2), 180–186. https://doi.org/10.34151/jurtek.v16i2.4512