Analisis Time Series Untuk Deep Learning Dan Prediksi Data Spasial Seismik: Studi Literatur

Authors

  • Eko Nur Cahyo Jurusan Informatika, Institut Sains & Teknologi AKPRIND Yogyakarta
  • Erma Susanti* Jurusan Informatika, Institut Sains & Teknologi AKPRIND Yogyakarta

DOI:

https://doi.org/10.34151/jurtek.v15i2.3581

Keywords:

deep learning, earthquake, forecasting, spatial data seismic, time series analysis

Abstract

Time series analysis is a deep learning method to process data stored in a dense time. This method works for forecast data in particular cases,  such as to analyze and provide the output of a trend from the data. Time series analysis can be used to analyze trends in natural disasters such as earthquakes in Indonesia. As technology advances today, in addition to using seismographs or tools to predict seismic phenomena on the earth's surface, time series analysis can be used to make forecasts and predictions. This paper will summarize various literature reviews about time series analysis and previous research to predict seismic spatial data over the last ten years. The goal is to afford the several approaches or algorithms to be able to forecast seismic spatial data to increase awareness. The results of this literature study were used to find trends, state of the arts, and research challenges and develop new models or methods to predict seismic spatial data. The study shows that deep learning methods can achieve better accurate performance in processing seismic spatial data and other complex data than conventional methods. The deep learning methods can use Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), linear regression, and Artificial Neural Network (ANN).

Downloads

Download data is not yet available.

References

Aigner, W., Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of Time-Oriented Data. In Human-Computer Interaction.

Al’afi, A. M., Widiart, W., Kurniasari, D., & Usman, M. (2020). Peramalan Data Time Series Seasonal Menggunakan Metode Analisis Spektral. Jurnal Siger Matematika. https://doi.org/10.23960/jsm.v1i1.2484

Alif, S. M., Meilano, I., Gunawan, E., & Efendi, J. (2016). Evidence of Postseismic Deformation Signal of the 2007 M8.5 Bengkulu Earthquake and the 2012 M8.6 Indian Ocean Earthquake in Southern Sumatra, Indonesia, Based on GPS Data. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2015-0019

Alqahtani, A., Ali, M., Xie, X., & Jones, M. W. (2021). Deep time-series clustering: A review. In Electronics (Switzerland). https://doi.org/10.3390/electronics10233001

Alqahtani, A., Xie, X., Deng, J., & Jones, M. W. (2018). A Deep Convolutional Auto-Encoder with Embedded Clustering. Proceedings - International Conference on Image Processing, ICIP. https://doi.org/10.1109/ICIP.2018.8451506

Anugrah, B., Meilano, I., Gunawan, E., & Efendi, J. (2015). Estimation of postseismic deformation parameters from continuous GPS data in northern Sumatra after the 2004 Sumatra-Andaman earthquake. Earthquake Science. https://doi.org/10.1007/s11589-015-0136-x

Ardika, M., Meilano, I., & Gunawan, E. (2015). Postseismic deformation parameters of the 2010 M7.8 Mentawai, Indonesia, earthquake inferred from continuous GPS observations. Asian Journal of Earth Sciences. https://doi.org/10.3923/ajes.2015.127.133

Azis, M. F. A., Darari, F., & Septyandy, M. R. (2020). Time series analysis on earthquakes using EDA and machine learning. 2020 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2020.

https://doi.org/10.1109/ICACSIS51025.2020.9263188

Brilliantina, M. V., Pratiwi, H., & Susanti, Y. (2021). Analisis Seismisitas pada Data Gempa Bumi di Provinsi Maluku Utara Penerapan Model Epidemic Type Aftershock Sequence (ETAS). Prosiding Pendidikan Matematika Dan Matematika.

Cho, M., Kim, B., Bae, H. J., & Seo, J. (2014). Stroscope: Multi-scale visualization of irregularly measured time-series data. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2013.2297933

Daryono, Brotopuspito, K. S., & Sutikno. (2018). Hubungan antara Indeks Kerentanan Seismik dan Rasio Kerusakan pada Satuan Bentuklahan di Zona Graben Bantul Yogyakarta. Proceeding Seminar Nasional Kebumian Ke-11: Perspektif Ilmu Kebumian Dalam Kajian Bencana Geologi Di Indonesia.

Ergen, T., & Kozat, S. S. (2018). Efficient online learning algorithms based on LSTM neural networks. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2017.2741598

Gao, S., Huang, Y., Zhang, S., Han, J., Wang, G., Zhang, M., & Lin, Q. (2020). Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.125188

Gunawan, E., Ghozalba, F., Syauqi, Widiastomo, Y., Meilano, I., Hanifa, N. R., Daryono, & Hidayati, S. (2017). Field Investigation of the November to December 2015 Earthquake Swarm in West Halmahera, Indonesia. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-016-0117-4

Gunawan, E., Sagiya, T., Ito, T., Kimata, F., Tabei, T., Ohta, Y., Meilano, I., Abidin, H. Z., Agustan, Nurdin, I., & Sugiyanto, D. (2014). A comprehensive model of postseismic deformation of the 2004 Sumatra-Andaman earthquake deduced from GPS observations in northern Sumatra. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2014.03.016

Habsy, B. A. (2017). Seni Memehami Penelitian Kuliatatif Dalam Bimbingan Dan Konseling : Studi Literatur. JURKAM: Jurnal Konseling Andi Matappa. https://doi.org/10.31100/jurkam.v1i2.56

Hotz, I., & Peikert, R. (2014). Definition of a multifield. Mathematics and Visualization. https://doi.org/10.1007/978-1-4471-6497-5_10

Ito, T., Gunawan, E., Kimata, F., Tabei, T., Simons, M., Meilano, I., Agustan, N., Ohta, Y., Nurdin, I., & Sugiyanto, D. (2012). Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2011JB008940

Latifiana, K. (2019). Pemetaan Habitat Potensial Herpetofauna Pada Daerah Terdampak Erupsi Gunung Merapi 2010. Seminar Nasional Geomatika. https://doi.org/10.24895/sng.2018.3-0.1002

Lin, M., Qin, J., & Wang, G. (2020). Multi-scale cross-correlation analysis of temporal and spatial seismic data. European Physical Journal B. https://doi.org/10.1140/epjb/e2020-100536-5

Lok, S., & Karabatak, M. (2021). Earthquake Prediction by Using Time Series Analysis. 9th International Symposium on Digital Forensics and Security, ISDFS 2021. https://doi.org/10.1109/ISDFS52919.2021.9486358

Muhuri, P. S., Chatterjee, P., Yuan, X., Roy, K., & Esterline, A. (2020). Using a long short-term memory recurrent neural network (LSTM-RNN) to classify network attacks. Information (Switzerland). https://doi.org/10.3390/INFO11050243

Nimiya, H., Ikeda, T., & Tsuji, T. (2017). Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake. Science Advances. https://doi.org/10.1126/sciadv.1700813

Nistor, S. C., Moca, M., Moldovan, D., Oprean, D. B., & Nistor, R. L. (2021). Building a Twitter sentiment analysis system with recurrent neural networks. Sensors. https://doi.org/10.3390/s21072266

Pollitz, F. F. (1996). Coseismic deformation from earthquake faulting on a layered spherical earth. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.1996.tb06530.x

Rizaty, M. A. (2022). 10.519 Gempa Bumi Guncang Indonesia Sepanjang 2021. Databoks. https://databoks.katadata.co.id/datapublish/2022/06/20/10519-gempa-bumi-guncang-indonesia-sepanjang-2021#:~:text=Berdasarkan catatan Badan Pusat Statistik,Pulau Sulawesi%2C yaitu 925 kali.

Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena. https://doi.org/10.1016/j.physd.2019.132306

Susilo, Abidin, H. Z., Meilano, I., Sapiie, B., Gunawan, E., Wijarnto, A. B., & Efendi, J. (2017). Preliminary co-sesimic deformation model for Indonesia geospatial reference system 2013. AIP Conference Proceedings. https://doi.org/10.1063/1.4987073

Thoyibah, Z., Sukma Purqoti, D. N., & Oktaviana, E. (2020). Gambaran Tingkat Kecemasan Korban Gempa Lombok. Jurnal Persatuan Perawat Nasional Indonesia (JPPNI). https://doi.org/10.32419/jppni.v4i3.190

Wang, J., Li, X., Li, J., Sun, Q., & Wang, H. (2022). NGCU: A New RNN Model for Time-Series Data Prediction. Big Data Research. https://doi.org/10.1016/j.bdr.2021.100296

Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2014). Time series classification using multi-channels deep convolutional neural networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-08010-9_33

Published

2023-01-02

How to Cite

Nur Cahyo, E. ., & Susanti*, E. . (2023). Analisis Time Series Untuk Deep Learning Dan Prediksi Data Spasial Seismik: Studi Literatur. Jurnal Teknologi, 15(2), 124–136. https://doi.org/10.34151/jurtek.v15i2.3581