Analisis Time Series Untuk Deep Learning Dan Prediksi Data Spasial Seismik: Studi Literatur
DOI:
https://doi.org/10.34151/jurtek.v15i2.3581Keywords:
deep learning, earthquake, forecasting, spatial data seismic, time series analysisAbstract
Time series analysis is a deep learning method to process data stored in a dense time. This method works for forecast data in particular cases, such as to analyze and provide the output of a trend from the data. Time series analysis can be used to analyze trends in natural disasters such as earthquakes in Indonesia. As technology advances today, in addition to using seismographs or tools to predict seismic phenomena on the earth's surface, time series analysis can be used to make forecasts and predictions. This paper will summarize various literature reviews about time series analysis and previous research to predict seismic spatial data over the last ten years. The goal is to afford the several approaches or algorithms to be able to forecast seismic spatial data to increase awareness. The results of this literature study were used to find trends, state of the arts, and research challenges and develop new models or methods to predict seismic spatial data. The study shows that deep learning methods can achieve better accurate performance in processing seismic spatial data and other complex data than conventional methods. The deep learning methods can use Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), Gate Recurrent Unit (GRU), linear regression, and Artificial Neural Network (ANN).
Downloads
References
Aigner, W., Miksch, S., Schumann, H., & Tominski, C. (2011). Visualization of Time-Oriented Data. In Human-Computer Interaction.
Al’afi, A. M., Widiart, W., Kurniasari, D., & Usman, M. (2020). Peramalan Data Time Series Seasonal Menggunakan Metode Analisis Spektral. Jurnal Siger Matematika. https://doi.org/10.23960/jsm.v1i1.2484
Alif, S. M., Meilano, I., Gunawan, E., & Efendi, J. (2016). Evidence of Postseismic Deformation Signal of the 2007 M8.5 Bengkulu Earthquake and the 2012 M8.6 Indian Ocean Earthquake in Southern Sumatra, Indonesia, Based on GPS Data. Journal of Applied Geodesy. https://doi.org/10.1515/jag-2015-0019
Alqahtani, A., Ali, M., Xie, X., & Jones, M. W. (2021). Deep time-series clustering: A review. In Electronics (Switzerland). https://doi.org/10.3390/electronics10233001
Alqahtani, A., Xie, X., Deng, J., & Jones, M. W. (2018). A Deep Convolutional Auto-Encoder with Embedded Clustering. Proceedings - International Conference on Image Processing, ICIP. https://doi.org/10.1109/ICIP.2018.8451506
Anugrah, B., Meilano, I., Gunawan, E., & Efendi, J. (2015). Estimation of postseismic deformation parameters from continuous GPS data in northern Sumatra after the 2004 Sumatra-Andaman earthquake. Earthquake Science. https://doi.org/10.1007/s11589-015-0136-x
Ardika, M., Meilano, I., & Gunawan, E. (2015). Postseismic deformation parameters of the 2010 M7.8 Mentawai, Indonesia, earthquake inferred from continuous GPS observations. Asian Journal of Earth Sciences. https://doi.org/10.3923/ajes.2015.127.133
Azis, M. F. A., Darari, F., & Septyandy, M. R. (2020). Time series analysis on earthquakes using EDA and machine learning. 2020 International Conference on Advanced Computer Science and Information Systems, ICACSIS 2020.
https://doi.org/10.1109/ICACSIS51025.2020.9263188
Brilliantina, M. V., Pratiwi, H., & Susanti, Y. (2021). Analisis Seismisitas pada Data Gempa Bumi di Provinsi Maluku Utara Penerapan Model Epidemic Type Aftershock Sequence (ETAS). Prosiding Pendidikan Matematika Dan Matematika.
Cho, M., Kim, B., Bae, H. J., & Seo, J. (2014). Stroscope: Multi-scale visualization of irregularly measured time-series data. IEEE Transactions on Visualization and Computer Graphics. https://doi.org/10.1109/TVCG.2013.2297933
Daryono, Brotopuspito, K. S., & Sutikno. (2018). Hubungan antara Indeks Kerentanan Seismik dan Rasio Kerusakan pada Satuan Bentuklahan di Zona Graben Bantul Yogyakarta. Proceeding Seminar Nasional Kebumian Ke-11: Perspektif Ilmu Kebumian Dalam Kajian Bencana Geologi Di Indonesia.
Ergen, T., & Kozat, S. S. (2018). Efficient online learning algorithms based on LSTM neural networks. IEEE Transactions on Neural Networks and Learning Systems. https://doi.org/10.1109/TNNLS.2017.2741598
Gao, S., Huang, Y., Zhang, S., Han, J., Wang, G., Zhang, M., & Lin, Q. (2020). Short-term runoff prediction with GRU and LSTM networks without requiring time step optimization during sample generation. Journal of Hydrology. https://doi.org/10.1016/j.jhydrol.2020.125188
Gunawan, E., Ghozalba, F., Syauqi, Widiastomo, Y., Meilano, I., Hanifa, N. R., Daryono, & Hidayati, S. (2017). Field Investigation of the November to December 2015 Earthquake Swarm in West Halmahera, Indonesia. Geotechnical and Geological Engineering. https://doi.org/10.1007/s10706-016-0117-4
Gunawan, E., Sagiya, T., Ito, T., Kimata, F., Tabei, T., Ohta, Y., Meilano, I., Abidin, H. Z., Agustan, Nurdin, I., & Sugiyanto, D. (2014). A comprehensive model of postseismic deformation of the 2004 Sumatra-Andaman earthquake deduced from GPS observations in northern Sumatra. Journal of Asian Earth Sciences. https://doi.org/10.1016/j.jseaes.2014.03.016
Habsy, B. A. (2017). Seni Memehami Penelitian Kuliatatif Dalam Bimbingan Dan Konseling : Studi Literatur. JURKAM: Jurnal Konseling Andi Matappa. https://doi.org/10.31100/jurkam.v1i2.56
Hotz, I., & Peikert, R. (2014). Definition of a multifield. Mathematics and Visualization. https://doi.org/10.1007/978-1-4471-6497-5_10
Ito, T., Gunawan, E., Kimata, F., Tabei, T., Simons, M., Meilano, I., Agustan, N., Ohta, Y., Nurdin, I., & Sugiyanto, D. (2012). Isolating along-strike variations in the depth extent of shallow creep and fault locking on the northern Great Sumatran Fault. Journal of Geophysical Research: Solid Earth. https://doi.org/10.1029/2011JB008940
Latifiana, K. (2019). Pemetaan Habitat Potensial Herpetofauna Pada Daerah Terdampak Erupsi Gunung Merapi 2010. Seminar Nasional Geomatika. https://doi.org/10.24895/sng.2018.3-0.1002
Lin, M., Qin, J., & Wang, G. (2020). Multi-scale cross-correlation analysis of temporal and spatial seismic data. European Physical Journal B. https://doi.org/10.1140/epjb/e2020-100536-5
Lok, S., & Karabatak, M. (2021). Earthquake Prediction by Using Time Series Analysis. 9th International Symposium on Digital Forensics and Security, ISDFS 2021. https://doi.org/10.1109/ISDFS52919.2021.9486358
Muhuri, P. S., Chatterjee, P., Yuan, X., Roy, K., & Esterline, A. (2020). Using a long short-term memory recurrent neural network (LSTM-RNN) to classify network attacks. Information (Switzerland). https://doi.org/10.3390/INFO11050243
Nimiya, H., Ikeda, T., & Tsuji, T. (2017). Spatial and temporal seismic velocity changes on Kyushu Island during the 2016 Kumamoto earthquake. Science Advances. https://doi.org/10.1126/sciadv.1700813
Nistor, S. C., Moca, M., Moldovan, D., Oprean, D. B., & Nistor, R. L. (2021). Building a Twitter sentiment analysis system with recurrent neural networks. Sensors. https://doi.org/10.3390/s21072266
Pollitz, F. F. (1996). Coseismic deformation from earthquake faulting on a layered spherical earth. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.1996.tb06530.x
Rizaty, M. A. (2022). 10.519 Gempa Bumi Guncang Indonesia Sepanjang 2021. Databoks. https://databoks.katadata.co.id/datapublish/2022/06/20/10519-gempa-bumi-guncang-indonesia-sepanjang-2021#:~:text=Berdasarkan catatan Badan Pusat Statistik,Pulau Sulawesi%2C yaitu 925 kali.
Sherstinsky, A. (2020). Fundamentals of Recurrent Neural Network (RNN) and Long Short-Term Memory (LSTM) network. Physica D: Nonlinear Phenomena. https://doi.org/10.1016/j.physd.2019.132306
Susilo, Abidin, H. Z., Meilano, I., Sapiie, B., Gunawan, E., Wijarnto, A. B., & Efendi, J. (2017). Preliminary co-sesimic deformation model for Indonesia geospatial reference system 2013. AIP Conference Proceedings. https://doi.org/10.1063/1.4987073
Thoyibah, Z., Sukma Purqoti, D. N., & Oktaviana, E. (2020). Gambaran Tingkat Kecemasan Korban Gempa Lombok. Jurnal Persatuan Perawat Nasional Indonesia (JPPNI). https://doi.org/10.32419/jppni.v4i3.190
Wang, J., Li, X., Li, J., Sun, Q., & Wang, H. (2022). NGCU: A New RNN Model for Time-Series Data Prediction. Big Data Research. https://doi.org/10.1016/j.bdr.2021.100296
Zheng, Y., Liu, Q., Chen, E., Ge, Y., & Zhao, J. L. (2014). Time series classification using multi-channels deep convolutional neural networks. Lecture Notes in Computer Science (Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). https://doi.org/10.1007/978-3-319-08010-9_33
Downloads
Published
How to Cite
Issue
Section
License
Copyright (c) 2022 Erma Susanti
This work is licensed under a Creative Commons Attribution 4.0 International License.
Jurnal Teknologi provides immediate open access to its content in order of making research freely available to the public to support a global exchange of knowledge. All articles published in this journal are free for everyone to read and download, under licence CC BY SA.
Benefits of open access for the author, include:
- Free access for all users worldwide.
- Authors retain copyright to their work.
- Increased visibility and readership.
- No spatial constraints.