PERANCANGAN JARINGAN WIRELESS MULTIPLE SSID MENGGUNAKAN FITUR MIKROTIK CAPSMAN (Studi Kasus di Laboratorium Jaringan Kampus III IST AKPRIND Yogyakarta)

Fina Febrianti¹, Prita Haryani², Catur Iswahyudi³

¹Jurusan Informatika, Institut Sains & Teknologi AKPRIND Yogyakarta JI Kalisahak No.28 Komplek Balapan Tromol Pos 45, Yogyakarta 55222 Telp:(0274) 563029 Email: finafebrianti98@gmail.com¹, pritaharyani@akprind.ac.id², catur@akprind.ac.id³

Abstract

Campus III Network Laboratory IST AKPRIND Yogyakarta is one of the laboratories in the Informatics study program IST AKPRIND Yogyakarta, the laboratory already has a wireless network, but too many users in one access point device cause the internet network to become unstable or the network slow and configuration is still The method was carried out manually which resulted in having to configure the access point devices one by one because there was no centralized management of the access point. The results of designing a multiple SSID wireless network using the CAPsMAN mikrotik feature in the Campus III Network Laboratory IST AKPRIND Yogyakarta can run well and CAP (Control Access Point) has been successfully managed by CAPsMAN. QOS test results on multiple SSID networks using the CAPsMAN feature. In the throughput test, the average result is 101.2 KB. The result of packet loss on average is 0%, because after analyzing all packets there are no missing packets or in other words all packets have been sent to the destination. While Delay get an average result of 56.15 ms.

Keywords : Multiple SSID, CAPsMAN, Campus III Network Laboratory IST AKPRIND Yogyakarta.

Abstrak

Laboratorium Jaringan Kampus III IST AKPRIND Yogyakarta merupakan salah satu laboratorium yang berada di program studi Informatika IST AKPRIND Yogyakarta, laboratorium tersebut sudah memiliki jaringan *wireless*, namun terlalu banyaknya pengguna dalam satu perangkat akses point mengakibatkan jaringan internet menjadi tidak stabil atau jaringan menjadi lambat dan konfigurasi masih dilakukan metode secara manual yang mengakibatkan harus mengkonfigurasi perangkat akses point satu per satu dikarenakan tidak adanya manajemen akses point secara terpusat. Hasil dari perancangan jaringan *wireless multiple* SSID menggunakan fitur mikrotik CAPsMAN di Laboratorium Jaringan Kampus III IST AKPRIND Yogyakarta dapat berjalan dengan baik dan CAP (*Control Access Point*) sudah berhasil termanage oleh CAPsMAN. Hasil pengujian QOS pada jaringan *multiple* SSID menggunakan fitur CAPsMAN. Pada pengujian *throughput* mendapatkan hasil rata-rata 101,2 KB. Hasil *Packet loss* rata-rata 0%, dikarenakan setelah menganalisis seluruh paket tidak terdapat paket yang hilang atau dengan kata lain seluruh paket telah terkirim pada tujuan. Sedangkan *Delay* mendapatkan hasil rata-rata 56,15 ms.

Kata Kunci : *Multiple* SSID, CAPsMAN, Laboratorium Jaringan Kampus III IST AKPRIND Yogyakarta.

Pendahuluan

Perkembangan teknologi nirkabel atau *wireless* berkembang dengan pesat dan seiring dengan penggunaan internet. Internet dapat memudahkan berbagai hal, termasuk dalam mengakses informasi, melakukan komunikasi, serta melakukan pekerjaan lainnya. Jaringan komputer banyak digunakan oleh beberapa instansi seperti pemerintah, perusahaan, institusi akademik perguruan tinggi dan sekolah. Mikrotik merupakan salah satu *software* yang dapat dijadikan pusat *controller* atau pusat mengkonfigurasi seluruh jaringan *wireless* dan dibantu

dengan menggunakan fitur CAPsMAN (*Controller Access Point System Manager*) yang dapat berfungsi sebagai kontrol akses point secara terpusat mampu memberikan solusi dalam pengelolaan akses point yang masih banyak dilakukan secara manual. Sistem kerja dari CAPsMAN dapat mengelola masing-masing seluruh perangkat di dalam satu perangkat *controller*.

Laboratorium Jaringan Kampus III IST AKPRIND Yogyakarta merupakan salah satu laboratorium yang berada di program studi Informatika IST AKPRIND Yogyakarta yang beralamat di Kampus III JI. Bimasakti No.3 Pengok, Yogyakarta. Ruangan laboratorium terletak di Lantai 2 Kampus III IST AKPRIND Yogyakarta, di dalam laboratorium tersebut sudah memiliki jaringan *wireless*, namun terlalu banyaknya pengguna dalam satu perangkat akses point mengakibatkan jaringan internet menjadi tidak stabil atau jaringan menjadi lambat dan konfigurasi masih dilakukan metode secara manual yang mengakibatkan harus mengkonfigurasi perangkat akses point satu per satu dikarenakan tidak adanya manajemen akses point secara terpusat.

Tinjauan pustaka

Penelitian yang dilakukan oleh (Warman & Nofrizal, 2016) tentang Analisa Perbandingan Kinerja Fitur Mikrotik Capsman Dengan Konfigurasi *Tunnel* Dan Tanpa Menggunakan *Tunnel* Pada Router Mikrotik Rb951-2n. Dalam penelitian tersebut bertujuan untuk melakukan pengujian terhadap kofigurasi tunnel dan tanpa menggunakan *tunnel* terhadap kecepatan *download* data dan rata-rata bandwidth yang dibutuhkan saaat mendownload dengan menggunakan *sample* pengujian 2 sempel berformat iso dan RAR dengan ukuran data 100 MB sampai 900 MB.

Penelitian yang dilakukan oleh (Ratnasari, Farida, & Firdaus, 2017)menjelaskan tentang penerapan *Controller Access Point System Manager* (CAPsMAN) dan WDS untuk mengurangi banyaknya SSID yang ada pada SMK Al Ishlahiyah sehingga banyak *user* di sekolah tersebut harus *login* terus ketika berpindah tempat dan tidak adanya keamanan yang digunakan pada sekolah tersebut minimal WPA2-PSK. Dengan penerapan *Controller Access Point System Management* (CAPsMAN) dan *Wireless Distribution System* (WDS) dapat membantu guru, staff, serta siswa di SMK Terpadu Al Ishlahiyah melaksanakan aktifitas perkantoran dan belajar mengajar tanpa memikirkan terputus jaringan internet serta tidak perlu login kembali saat berpindah tempat dari gedung satu ke gedung yang lainnya.

Penelitian yang dilakukan oleh (Fransiska & Danang, 2019) yang bertujuan untuk menganalisis penempatan *access point* (AP) pada jaringan WLAN STMIK Asia Malang, yang berdampak terhadap level daya atau kuat sinyal yang diterima oleh pengguna. Pendekatan pertama melalui *site survey*, dengan tujuan yakni mendapatkan informasi yang cukup mengenai jumlah dan penempatan akses point yang saat ini diaplikasikan pada gedung kampus STMIK Asia Malang. Hasil dari *walktest* ini akan digunakan sebagai parameter untuk perhitungan teoritis menggunakan model propagasi *One Slope Model* (1SM).

Penelitian yang dilakukan oleh (Muhammad & Ibrahim, 2016) tentang mengembangkan jaringan dengan PC sebagai router dengan sistem operasi mikrotik router sehingga termasuk tipe penelitian rekayasa, yaitu penelitian yang menerapkan ilmu pengetahuan menjadi suatu rancangan guna mendapatkan kinerja sesuai dengan persyaratan yang ditentukan. Rancangan tersebut merupakan sintetis dari unsur-unsur yang dipadukan dengan ilmiah menjadi model yang memenuihi spesifikasi tertentu. Jaringan *wireless* pada SDN 24 Palu dihubungkan dengan 1 modem ADSL. Jaringan ini memiliki kapasitas *bandwitdh* 512 Kbps dengan jumlah *client* sebanyak 7 unit, yaitu 1 unit PC dan 6 unit laptop yang terhubung dengan jaringan hotspot dan dapat mengakses internet menggunakan jaringan WiFi.

Penelitian yang dilakukan oleh (Taufik, 2018) tentang Analisis Multi SSID VAP Didistribusi Jaringan *Wireless* Menggunakan Mikrotik Di Universitas Pasudan. Dalam penelitian ini dilakukan pengimplementasian jaringan *wireless* menggunakan Multi SSID dan VAP di mikrotik sebagai solusi penghematan infrastuktur jaringan yang ada. Selain itu juga dilakukan manajemen *bandwidth* yang baik untuk pendistribusian jaringan *wireless*. Hasil dalam penelitian ini yaitu dalam virtualisasi jaringan nirkabel untuk memudahkan user dalam melakukan koneksi, dalam setiap ruangan dikonfigurasi dengan ip sama agar pada saat berpindah ruangan tidak harus melakukan login kembali untuk melakukan koneksi.

Metodologi Penelitian

Diagram Alir Penelitian

Diagram alir penelitian adalah sebagai prosedur dalam langkah-langkah penelitian untuk melakukan perancangan jaringan *wireless multiple* SSID menggunakan fitur mikrotik CAPsMAN di Laboratorium Jaringan Kampus III IST AKPRIND Yogyakarta. Diagram alir ini menggunakan metode PPDIOO yang merupakan metode perancangan jaringan dari Cisco atau biasa disebut sebagai siklus hidup layanan jaringan Cisco yang dirancang untuk mendukung berkembangnya jaringan. PPDIOO yang terdiri dari *Prepare*, *Plan*, *Design*, *Implement*, *Operate*, dan *Optimize*. Diagram alir dapat dilihat pada gambar 1.

Gambar 1. Diagram Alir Penelitian

Rancangan Logic

Rancangan jaringan *wireless multiple SSID* menggunakan fitur mikrotik CAPsMAN diharapkan dapat dijadikan alternatif sebagai kontrol akses point secara terpusat mampu memberikan solusi dalam pengelolaan akses point yang masih banyak dilakukan secara manual. Melalui rancangan jaringan *wireless multiple SSID* menggunakan fitur mikrotik CAPsMAN ini, selain mempermudah *administrator* jaringan dalam melakukan pemeliharaan dan pengembangan jaringan, juga dapat membuat pengguna menjadi lebih nyaman dalam menggunakan jaringan komputer di Laboratorium Jaringan Kampus III IST AKPRIND.

Gambar 2. Topologi Jaringan

Rancangan Fisik

Rancangan topologi jaringan pada Laboratorium Jaringan Kampus III IST AKPRIND topologi tersebut didesain untuk keperluan pemilihan perangkat infrastruktur jaringan sebagai sarana untuk pengembangan jaringan. Dalam perancangan jaringan *wireless multiple* SSID menggunakan fitur mikrotik CAPsMAN ini menggunakan 3 router yaitu router 1 yang terhubung pada jaringan LAN di ruangan praktikum lab jarinet, router 2 yang terhubung pada jaringan LAN di ruangan staff lab jarinet dan ruangan workshop, router CAPsMAN yang berfungsi untuk memanajemen *access point* secara terpusat dan CAP sebagai *access point* penerima dan penyebar sinyal. Rancangan infrastruktur jaringan dapat dilihat pada gambar 3.

Gambar 3. Rancang Fisik

Hasil Dan Pembahasan

Konfigurasi CAPSMAN Dan CAP

CAPsMAN (*Controller Access Point system Manager*) merupakan sebuah fitur *wireless controller* yang memudahkan untuk mengatur semua perangkat *wireless access point* yang ada dijaringan secara terpusat. Langkah-langkah pembuatan CAPsMAN dapat dilakukan pada menu CAPSMAN \rightarrow *Caps Interface* \rightarrow *manager* \rightarrow centang *enable* pada tab *caps manager* seperti pada gambar 4.

CAPs Manager		
		ОК
Certificate:	▼	Cancel
CA Certificate:		Apply
	Require Peer Certificate	
Generated Certificate:		Interfaces
Generated CA Certificate:		
Package Path:		
Upgrade Policy:	none Ŧ	

Gambar 4. CAPs Manager

Konfigurasi Interface Wireless menjadi CAP penulis melakukan konfigurasi sistem pada menu Wireless \rightarrow Wifi Interface \rightarrow CAP. Centang Enabled untuk mengaktifkan CAP, Interface: Wlan1 (Interface yang akan dimanage oleh CAPsMAN), Discovery Interface: Ether1 (Interface yang terhubung langsung dengan CAPsMAN). Konfigurasi dapat dilihat seperti pada gambar 5.

Enabled		
		ок
Interfaces: wlan1	∓ ≑	Cancel
Certificate: none	Ŧ	Apply
Discovery Interfaces: ether1	∓ ≑	
Lock To CAPsM/	AN	
CAPsMAN Addresses:	\$	
CAPsMAN Names	\$	
APaMAN Certificate Common Names:	•	
Pridae: pape		
Static Virtual		
Requested Certificate:		
Locked CAPsMAN Common Name:		

Gambar 5. Konfigurasi koneksi CAP ke CAPSMAN Server

Setelah melakukan konfigurasi *interface wireless* menjadi CAP maka seluruh pengaturan *wireless* akan diatur oleh CAPSMAN *Server*, SSID yang akan ditampilkan juga berdasarkan pada pengaturan CAPSMAN *Server*. Didalam cap1 terdapat Multi SSID 1 yang tidak memiliki *access point* fisik, sama halnya dengan Multi SSID 2.

CAPsMAN	4										
CAP Inte	rface	Provisioning	Configurations	Channe	ls Datap	aths	Security	Cfg. Ac	cess List	Rates	
+	~		Reselec	ct Channe	Man	ager	AA	A		Find	1
	Name	A	Туре		MTU	Actua	IMTU	L2 MTU	Tx		Rx 🕶
SMB	cap	51	CAP Interface		1500		1500	1600		0 bps	
SB		Multi SSID 1	CAP Interface		1500		1500	1600		0 bps	
RSMB	cap	52	CAP Interface		1500		1500	1600		8.8 kbps	
SB		Multi SSID 2	CAP Interface		1500		1500	1600		0 bps	
•											•
4 items ou	ut of 11										-

Gambar 6. Konfigurasi Wireless Ter-manage CAPsMAN

Manajemen CAP Pada CAPsMAN

Manajemen CAP pada CAPsMAN dilakukan untuk menghubungkan CAP dengan CAPsMAN *server* yang telah dikonfigurasi sebelumnya, terlihat keterangan *managed by CAPsMAN* yang artinya CAP sudah termanage oleh CAPsMAN. *Access point* dengan nama Dosen_wifi dan Mahasiswa_wifi sudah termanage oleh CAPsMAN, pada kedua *access point* tidak dapat diubah konfigurasinya dan hanya dapat diubah pada CAPsMAN *server*.

and the second				•		oooco aat mogaa	Hood Station Hatchie Baar /	
ooper Find	Wireless Snooper	Wireless Sniffer	Alignment	Freq. Usage	ip Repeater Scanner	WPS Client S	💥 🗂 🍸 🕻 CAP	+ 🖉
) FP Tx	Rx Packet (p/s)	Tx Packet (p/s)		Rx	Actual MTU Tx	/ Туре	Name
							/ CAPsMAN	managed by
					ding	wifi, CAPsMAN for	12/20-Ce/gn(30dBm), SSID: dosen	channel: 24
0 bps	0	0		0 bps	0 bps	1500	Wireless (Atheros AR9	(∲wlan1
							/ CAPsMAN	managed by
							isiswawifi, CAPsMAN forwarding	SSID: maha
0 bps	0	0		0 bps	0 bps	1500	4 Virtual)X 🐶wlar
	0	0		0 bps	0 bps	1500	siswawifi, CAPsMAN forwarding 4 Virtual	SSID: maha IX 999wlar

2 items out of 6 (1 selected)

Gambar 7. CAP Yang Terhubung CAPsMAN

Pengujian Bandwidth

Pengujian *bandwidth* dilakukan dengan laptop client yang sudah terhubung ke dalam jaringan *hotspot* dan pengujian akan melakukan *speedtest* menggunakan situs <u>www.speedtest.net</u>. Pengujian dilakukan pada CAP 1 dan CAP 2 dengan user 4 user yang terhubung.

Gambar 8. Hasil speedtest Dosen_wifi

asil dari speedtest pada saat *user* aktif yang terhubung pada SSID Dosen_wifi, mendapatkan kecepatan *download* sebesar 1,95 Mbps dan mendapatkan kecepatan *upload* sebesar 0,94 Mbps. Sesuai dengan besarnya *bandwidth* yang diberikan yaitu 2Mbps *download* dan 1Mbps *upload*, maka pengujian dengan speedtest dikatakan berhasil untuk masing-masing *user*.

Pengujian Kinerja CAP

Pengujian kinerja CAP dilakukan menggunakan parameter QOS (*Quality of Service*) adalah *delay, packet loss, throughput* pada *access point*. Dalam pengujian ini menggunakan *tool wireshark* untuk mengamati data, dapat dilihat pada tabel 1. Hasil rata-rata pengujian kinerja jaringan CAP dalam 4 kali pengujian semua *user* mengakses <u>www.youtube.com</u> internet menggunakan *microsoft excel* untuk melakukan perhitungan QOS.

User	Ukuran Paket <i>(Byte)</i>	Lama Pengiriman <i>(Second)</i>	Total Delay (MiliSecond)	Total Paket (<i>Megabyte</i>)
1	2231,359	34,803	73,76358	1914
2	2228,513	34,014	72,25786	1910
3	2222,471	34,627	72,25277	1908
4	2340,129	34,634	74,23214	1921
Total	9022,472	138,078	292,5064	7653
Rata-rata	2255,618	34,519	73,12658	1913

Setelah dilakukan analisis pada total ukuran paket (*Byte*) didapatkan total sebesar 9022,472 B dengan rata-rata 2255,618 B, hasil lama pengiriman (*Second*) didapatkan total sebesar 138,078 s dengan rata-rata 34,519 s, hasil total *delay* (*MiliSecond*) didapatkan total

sebesar 292,5064 ms dengan rata-rata 73,12658 ms, hasil total paket (*Megabyte*) didapatkan total sebesar 7653 mb dengan rata-rata 1913 mb.

	Control Access Point					
User	Throughput (KiloByte)	Packet Loss (%)	Delay (MiliSecond)			
1	51,291184	0 %	73,76358			
2	52,414016	0 %	72,25786			
3	51,346544	0 %	72,25277			
4	54,053912	0 %	74,23214			
Rata-rata	52,276414	0 %	73,12658			

Tabel 2. Hasil Parameter Kinerja Jaringan CAP

Throughput pada CAP yang merupakan kecepatan transfer data efektif, yang diukur dalam bps mendapatkan hasil rata-rata 51,29 KB. Hasil *Packet loss* pada CAP menunjukkan hasil rata-rata 0%, dikarenakan setelah menganalisis seluruh paket tidak terdapat paket yang hilang atau dengan kata lain seluruh paket telah terkirim pada tujuan. Sedangkan *delay* pada CAP sebagai waktu yang dibutuhkan data untuk menempuh jarak dari asal ketujuan mendapatkan hasil rata-rata 73,12 ms.

Pengujian Kinerja Jaringan Multiple SSID

Pengujian kinerja jaringan *multiple* SSID yang dilakukan menggunakan parameter QOS adalah *throughput*, *delay*, *packet loss* pada *multiple* SSID. Dalam pengujian ini menggunakan *tool wireshark* untuk mengamati data pada tabel 3. Tabel 3 merupakan hasil rata-rata pengujian jaringan kinerja *multiple* SSID dalam 4 kali pengujian semua *user* mengakses <u>www.youtube.com</u> menggunakan *microsoft excel* untuk melakukan perhitungan QOS.

User	Ukuran Paket <i>(Byte)</i>	Lama Pengiriman <i>(Second)</i>	Total Delay (MiliSecond)	Total Paket (<i>Megabyte</i>)
1	4304,517	34,017	56,59787	3656
2	3792,481	34,224	55,67537	3453
3	3627,254	34,269	56,65947	3522
4	3490,224	34,285	55,67829	3456
Total	15214,476	136,695	224,61100	14087
Rata-rata	3803,619	34,17375	56,15275	3521

Tabel 3. Hasil Pengujian Jaringan Multiple SSID

Setelah dilakukan analisis pada total ukuran paket (*Byte*) didapatkan total sebesar 15214,476 B dengan rata-rata 3803,619 B, hasil lama pengiriman (*Second*) didapatkan total sebesar 136,695 s dengan rata-rata 34,17375 s, hasil total *delay* (*MiliSecond*) didapatkan total sebesar 224,61100 ms dengan rata-rata 56,15275 ms, hasil total paket (*Megabyte*) didapatkan total sebesar 14087 mb dengan rata-rata 3521 mb.

•								
	Multiple SSID							
User	Throughput (KiloByte)	Packet Loss (%)	Delay (MiliSecond)					
1	101,2321369	0 %	56,59787					
2	88,65079476	0 %	55,67537					
3	84,67720680	0 %	56,65947					
4	81,44025667	0 %	55,67829					
Rata-rata	89,00009878	0 %	56,15275					

Tabel 4. Hasil Parameter Kinerja Multiple SSID

Throughput pada jaringan multiple SSID yang merupakan kecepatan transfer data efektif, yang diukur dalam bps mendapatkan hasil rata-rata 101,2 KB. Hasil *packet loss* pada jaringan multiple SSID menunjukkan hasil rata-rata 0%, dikarenakan setelah menganalisis seluruh paket tidak terdapat paket yang hilang atau dengan kata lain seluruh paket telah terkirim pada tujuan. Sedangkan *delay* pada jaringan *multiple* SSID sebagai waktu yang dibutuhkan data untuk menempuh jarak dari asal ketujuan mendapatkan hasil rata-rata 56,15 ms.

Kesimpulan

Mengacu pada tujuan atau rumusan masalah dalam penelitian ini menghasilkan sebagai berikut:

- 1. Hasil dari perancangan jaringan *wireless multiple* SSID menggunakan fitur mikrotik CAPsMAN di Laboratorium Jaringan Kampus III IST AKPRIND Yogyakarta menjadi lebih mudah untuk memanajemen *access point* secara terpusat dan hasil perancangan jaringan *multiple* SSID tidak menggunakan *Access point* fisik, hanya memanfaatkan sebuah mikrotik Routerboard yang sudah memiliki fungsi *wireless* sebagai *Access point*.
- 2. Hasil dari perancangan jaringan *wireless multiple* SSID menggunakan fitur CAPSMAN di Laboratorium Kampus III IST Akprind Yogyakarta dapat berjalan dengan baik dan CAP (*Control Access Point*) sudah berhasil termanage oleh CAPSMAN.

Saran

Agar kinerja jaringan *multiple* SSID menggunakan fitur mikrotik CAPsMAN dapat berjalan dengan maksimal maka ada beberapa saran untuk penelitian selanjutnya, antara lain:

- 1. Dalam penelitian selanjutnya untuk rancangan jaringan *multiple* SSID menggunakan fitur mikrotik CAPsMAN sebaiknya menambahkan *Access point* fisik yang dapat memancarkan SSID dalam cakupan yang luas dan dilihat dari hasil kinerja jaringan menunjukkan bahwa kinerja jaringan *access point* fisik lebih layak digunakan.
- 2. Dalam penelitian selanjutnya untuk rancangan jaringan *multiple* SSID menggunakan fitur mikrotik CAPsMAN sebaiknya meningkatkan keamanan agar sistem jaringan terhindar dari berbagai serangan. Untuk menanggulangi hal tersebut penulis menyarankan untuk membatasi port-port yang dapat diakses dari internet dan hak akses user yang dapat mengakses ke dalam jaringan CAPsMAN.

Daftar Pustaka

- Fransiska, S., & Danang, A. (2019). Analisis Penempatan Access Point Pada Jaringan Wireless LAN. Jurnal Ilmiah Teknologi Informasi Asia. Vol.13, No. 1, Tahun 2019.
- Muhammad, M., & Ibrahim, H. (2016). Analisa Dan Pengembangan Jaringan Wireless Berbasis Mikrotik Router OS V.5.20 Di Sekolah Dasar Negeri 24 Palu. Jurnal Elektronik Sistem Informasi Dan Komputer, Vol.2 No.1.
- Ratnasari, S. D., Farida, E., & Firdaus, N. (2017). Implementasi Controller Access Point System Manager (CAPsMAN) Dan Wireless Distribution System (WDS) Jaringan Wireless Di SMK Terpadu Al Ishlahiyah Singosari Malang. In *In Seminar Nasional Sistem Informasi* 2017 Fakultas Teknologi Informasi – UNMER Malang (pp. 624–635).
- Taufik, R. (2018). Analisis Multi SSID VAP Distribusi JAringan Wireless Menggunakan Mikrotik di Universitas Pasundan. Studi Kasus Prodi Informatika Unpas. In *Skripsi, Unpas.* Bandung.
- Warman, I., & Nofrizal. (2016). Analisa Perbandingan Kinerja Fitur Mikrotik Capsman Dengan Konfigurasi Tunnel dan Tanpa Menggunakan Tunnel pada Router Mikrotik RB951-2N. Vol. 4 No. 2 Oktober 2016, 4(2), 96–105.